Back to Search Start Over

Spectral asymptotics for sub-Riemannian Laplacians

Authors :
de Verdìère, Yves Colin
Hillairet, Luc
Trélat, Emmanuel
Institut Fourier (IF)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Institut Denis Poisson (IDP)
Université d'Orléans (UO)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Jacques-Louis Lions (LJLL (UMR_7598))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Control And GEometry (CaGE )
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Publication Year :
2022

Abstract

We study spectral properties of sub-Riemannian Laplacians, which are hypoelliptic operators. The main objective is to obtain quantum ergodicity results, what we have achieved in the 3D contact case. In the general case we study the small-time asymptotics of sub-Riemannian heat kernels. We prove that they are given by the nilpotentized heat kernel. In the equiregular case, we infer the local and microlocal Weyl law, putting in light the Weyl measure in sR geometry. This measure coincides with the Popp measure in low dimension but differs from it in general. We prove that spectral concentration occurs on the shief generated by Lie brackets of length r-1, where r is the degree of nonholonomy. In the singular case, like Martinet or Grushin, the situation is more involved but we obtain small-time asymptotic expansions of the heat kernel and the Weyl law in some cases. Finally, we give the Weyl law in the general singular case, under the assumption that the singular set is stratifiable.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....d68bcaf36682e3d71588bd227d67f934