Back to Search Start Over

Type I interferon and pattern recognition receptor signaling following particulate matter inhalation

Authors :
Ja K Gu
Angie Liston
Shengqiao Li
Petia P. Simeonova
Rebecca Salmen-Muniz
Bean T. Chen
Samuel Stone
Patti C. Zeidler-Erdely
Michael L. Kashon
James M. Antonini
Aaron Erdely
David G. Frazer
Tracy Hulderman
Source :
Particle and Fibre Toxicology, Vol 9, Iss 1, p 25 (2012), Particle and Fibre Toxicology
Publication Year :
2012
Publisher :
BMC, 2012.

Abstract

Background Welding, a process that generates an aerosol containing gases and metal-rich particulates, induces adverse physiological effects including inflammation, immunosuppression and cardiovascular dysfunction. This study utilized microarray technology and subsequent pathway analysis as an exploratory search for markers/mechanisms of in vivo systemic effects following inhalation. Mice were exposed by inhalation to gas metal arc – stainless steel (GMA-SS) welding fume at 40 mg/m3 for 3 hr/d for 10 d and sacrificed 4 hr, 14 d and 28 d post-exposure. Whole blood cells, aorta and lung were harvested for global gene expression analysis with subsequent Ingenuity Pathway Analysis and confirmatory qRT-PCR. Serum was collected for protein profiling. Results The novel finding was a dominant type I interferon signaling network with the transcription factor Irf7 as a central component maintained through 28 d. Remarkably, these effects showed consistency across all tissues indicating a systemic type I interferon response that was complemented by changes in serum proteins (decreased MMP-9, CRP and increased VCAM1, oncostatin M, IP-10). In addition, pulmonary expression of interferon α and β and Irf7 specific pattern recognition receptors (PRR) and signaling molecules (Ddx58, Ifih1, Dhx58, ISGF3) were induced, an effect that showed specificity when compared to other inflammatory exposures. Also, a canonical pathway indicated a coordinated response of multiple PRR and associated signaling molecules (Tlr7, Tlr2, Clec7a, Nlrp3, Myd88) to inhalation of GMA-SS. Conclusion This methodological approach has the potential to identify consistent, prominent and/or novel pathways and provides insight into mechanisms that contribute to pulmonary and systemic effects following toxicant exposure.

Details

Language :
English
ISSN :
17438977
Volume :
9
Issue :
1
Database :
OpenAIRE
Journal :
Particle and Fibre Toxicology
Accession number :
edsair.doi.dedup.....d6d15a27eaa6e921651c57197ec2ca09