Back to Search Start Over

The existence of minimizers for an isoperimetric problem with Wasserstein penalty term in unbounded domains

Authors :
Bohan Zhou
Qinglan Xia
Source :
Advances in Calculus of Variations. 16:1-15
Publication Year :
2021
Publisher :
Walter de Gruyter GmbH, 2021.

Abstract

In this article, we consider the (double) minimization problem min ⁡ { P ⁢ ( E ; Ω ) + λ ⁢ W p ⁢ ( E , F ) : E ⊆ Ω , F ⊆ R d , | E ∩ F | = 0 , | E | = | F | = 1 } , \min\{P(E;\Omega)+\lambda W_{p}(E,F):E\subseteq\Omega,\,F\subseteq\mathbb{R}^{d},\,\lvert E\cap F\rvert=0,\,\lvert E\rvert=\lvert F\rvert=1\}, where λ ⩾ 0 \lambda\geqslant 0 , p ⩾ 1 p\geqslant 1 , Ω is a (possibly unbounded) domain in R d \mathbb{R}^{d} , P ⁢ ( E ; Ω ) P(E;\Omega) denotes the relative perimeter of 𝐸 in Ω and W p W_{p} denotes the 𝑝-Wasserstein distance. When Ω is unbounded and d ⩾ 3 d\geqslant 3 , it is an open problem proposed by Buttazzo, Carlier and Laborde in the paper On the Wasserstein distance between mutually singular measures. We prove the existence of minimizers to this problem when the dimension d ⩾ 1 d\geqslant 1 , 1 p + 2 d > 1 \frac{1}{p}+\frac{2}{d}>1 , Ω = R d \Omega=\mathbb{R}^{d} and 𝜆 is sufficiently small.

Details

ISSN :
18648266 and 18648258
Volume :
16
Database :
OpenAIRE
Journal :
Advances in Calculus of Variations
Accession number :
edsair.doi.dedup.....d6f45f4b84ccfb726f962ed8d40b160e
Full Text :
https://doi.org/10.1515/acv-2020-0083