Back to Search
Start Over
The existence of minimizers for an isoperimetric problem with Wasserstein penalty term in unbounded domains
- Source :
- Advances in Calculus of Variations. 16:1-15
- Publication Year :
- 2021
- Publisher :
- Walter de Gruyter GmbH, 2021.
-
Abstract
- In this article, we consider the (double) minimization problem min { P ( E ; Ω ) + λ W p ( E , F ) : E ⊆ Ω , F ⊆ R d , | E ∩ F | = 0 , | E | = | F | = 1 } , \min\{P(E;\Omega)+\lambda W_{p}(E,F):E\subseteq\Omega,\,F\subseteq\mathbb{R}^{d},\,\lvert E\cap F\rvert=0,\,\lvert E\rvert=\lvert F\rvert=1\}, where λ ⩾ 0 \lambda\geqslant 0 , p ⩾ 1 p\geqslant 1 , Ω is a (possibly unbounded) domain in R d \mathbb{R}^{d} , P ( E ; Ω ) P(E;\Omega) denotes the relative perimeter of 𝐸 in Ω and W p W_{p} denotes the 𝑝-Wasserstein distance. When Ω is unbounded and d ⩾ 3 d\geqslant 3 , it is an open problem proposed by Buttazzo, Carlier and Laborde in the paper On the Wasserstein distance between mutually singular measures. We prove the existence of minimizers to this problem when the dimension d ⩾ 1 d\geqslant 1 , 1 p + 2 d > 1 \frac{1}{p}+\frac{2}{d}>1 , Ω = R d \Omega=\mathbb{R}^{d} and 𝜆 is sufficiently small.
- Subjects :
- Applied Mathematics
Open problem
Minimization problem
Term (logic)
Lambda
Omega
Combinatorics
Mathematics - Analysis of PDEs
Mathematics - Classical Analysis and ODEs
Domain (ring theory)
Classical Analysis and ODEs (math.CA)
FOS: Mathematics
49J45, 49Q20, 49Q05, 49J20
Isoperimetric inequality
Analysis
Analysis of PDEs (math.AP)
Mathematics
Subjects
Details
- ISSN :
- 18648266 and 18648258
- Volume :
- 16
- Database :
- OpenAIRE
- Journal :
- Advances in Calculus of Variations
- Accession number :
- edsair.doi.dedup.....d6f45f4b84ccfb726f962ed8d40b160e
- Full Text :
- https://doi.org/10.1515/acv-2020-0083