Back to Search Start Over

Rational design of potent domain antibody inhibitors of amyloid fibril assembly

Authors :
Ann Marie Schmidt
Daniel P. Raleigh
Peter M. Tessier
Moumita Bhattacharya
Ralf Langen
Joseph M. Perchiacca
Jobin Varkey
Ali Reza A. Ladiwala
Andisheh Abedini
Ping Cao
Source :
Proceedings of the National Academy of Sciences of the United States of America, vol 109, iss 49
Publication Year :
2012
Publisher :
eScholarship, University of California, 2012.

Abstract

Antibodies hold significant potential for inhibiting toxic protein aggregation associated with conformational disorders such as Alzheimer’s and Huntington’s diseases. However, near-stoichiometric antibody concentrations are typically required to completely inhibit protein aggregation. We posited that the molecular interactions mediating amyloid fibril formation could be harnessed to generate antibodies with potent antiaggregation. Here we report that grafting small amyloidogenic peptides (6–10 residues) into the complementarity-determining regions of a single-domain (V H ) antibody yields potent domain antibody inhibitors of amyloid formation. Grafted AMyloid-Motif AntiBODIES (gammabodies) presenting hydrophobic peptides from Aβ (Alzheimer’s disease), α-Synuclein (Parkinson's disease), and islet amyloid polypeptide (type 2 diabetes) inhibit fibril assembly of each corresponding polypeptide at low substoichiometric concentrations (1:10 gammabody:monomer molar ratio). In contrast, sequence- and conformation-specific antibodies that were obtained via immunization are unable to prevent fibrillization at the same substoichiometric concentrations. Gammabodies prevent amyloid formation by converting monomers and/or fibrillar intermediates into small complexes that are unstructured and benign. We expect that our antibody design approach—which eliminates the need for immunization or screening to identify sequence-specific domain antibody inhibitors—can be readily extended to generate potent aggregation inhibitors of other amyloidogenic polypeptides linked to human disease.

Details

Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences of the United States of America, vol 109, iss 49
Accession number :
edsair.doi.dedup.....d7351fed5c7162529ae61f9c186a8df8