Back to Search Start Over

Euclid preparation : XXIII. Derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images

Authors :
Collaboration, Euclid
Bisigello, L
Conselice, C J
Baes, M
Bolzonella, M
Brescia, M
Cavuoti, S
Cucciati, O
Humphrey, A
Hunt, L K
Maraston, C
Pozzetti, L
Tortora, C
van Mierlo, S E
Aghanim, N
Auricchio, N
Baldi, M
Bender, R
Bodendorf, C
Bonino, D
Branchini, E
Brinchmann, J
Camera, S
Capobianco, V
Carbone, C
Carretero, J
Castander, F J
Castellano, M
Cimatti, A
Congedo, G
Conversi, L
Copin, Y
Corcione, L
Courbin, F
Cropper, M
Da Silva, A
Degaudenzi, H
Douspis, M
Dubath, F
Duncan, C A J
Dupac, X
Dusini, S
Farrens, S
Ferriol, S
Frailis, M
Franceschi, E
Franzetti, P
Fumana, M
Garilli, B
Gillard, W
Gillis, B
Giocoli, C
Grazian, A
Grupp, F
Guzzo, L
Haugan, S V H
Holmes, W
Hormuth, F
Hornstrup, A
Jahnke, K
Kümmel, M
Kermiche, S
Kiessling, A
Kilbinger, M
Kohley, R
Kunz, M
Kurki-Suonio, H
Ligori, S
Lilje, P B
Lloro, I
Maiorano, E
Mansutti, O
Marggraf, O
Markovic, K
Marulli, F
Massey, R
Maurogordato, S
Medinaceli, E
Meneghetti, M
Merlin, E
Meylan, G
Moresco, M
Moscardini, L
Munari, E
Niemi, S M
Padilla, C
Paltani, S
Pasian, F
Pedersen, K
Pettorino, V
Polenta, G
Poncet, M
Popa, L
Raison, F
Renzi, A
Rhodes, J
Riccio, G
Rix, H -W
Romelli, E
Roncarelli, M
Rosset, C
Rossetti, E
Saglia, R
Sapone, D
Sartoris, B
Schneider, P
Scodeggio, M
Secroun, A
Seidel, G
Sirignano, C
Sirri, G
Stanco, L
Tallada-Crespí, P
Tavagnacco, D
Taylor, A N
Tereno, I
Toledo-Moreo, R
Torradeflot, F
Tutusaus, I
Valentijn, E A
Valenziano, L
Vassallo, T
Wang, Y
Zacchei, A
Zamorani, G
Zoubian, J
Andreon, S
Bardelli, S
Boucaud, A
Colodro-Conde, C
Ferdinando, D Di
Graciá-Carpio, J
Lindholm, V
Maino, D
Mei, S
Scottez, V
Sureau, F
Tenti, M
Zucca, E
Borlaff, A S
Ballardini, M
Biviano, A
Bozzo, E
Burigana, C
Cabanac, R
Cappi, A
Carvalho, C S
Casas, S
Castignani, G
Cooray, A
Coupon, J
Courtois, H M
Cuby, J
Davini, S
De Lucia, G
Desprez, G
Dole, H
Escartin, J A
Escoffier, S
Farina, M
Fotopoulou, S
Ganga, K
Garcia-Bellido, J
George, K
Giacomini, F
Gozaliasl, G
Hildebrandt, H
Hook, I
Huertas-Company, M
Kansal, V
Keihanen, E
Kirkpatrick, C C
Loureiro, A
Macías-Pérez, J F
Magliocchetti, M
Mainetti, G
Marcin, S
Martinelli, M
Martinet, N
Metcalf, R B
Monaco, P
Morgante, G
Nadathur, S
Nucita, A A
Patrizii, L
Peel, A
Potter, D
Pourtsidou, A
Pöntinen, M
Reimberg, P
Sánchez, A G
Sakr, Z
Schirmer, M
Sefusatti, E
Sereno, M
Stadel, J
Teyssier, R
Valieri, C
Valiviita, J
Viel, M
Astronomy
Euclid Collaboration
L. Bisigello
C. J. Conselice
M. Bae
M. Bolzonella
M. Brescia
S. Cavuoti
O. Cucciati
A. Humphrey
L. K. Hunt
C. Maraston
L. Pozzetti
C. Tortora
S. E. van Mierlo
N. Aghanim
N. Auricchio
M. Baldi
R. Bender
C. Bodendorf
D. Bonino
E. Branchini
J. Brinchmann
S. Camera
V. Capobianco
C. Carbone
J. Carretero
F. J. Castander
M. Castellano
A. Cimatti
G. Congedo
L. Conversi
Y. Copin
L. Corcione
F. Courbin
M. Cropper
A. Da Silva
H. Degaudenzi
M. Douspi
F. Dubath
C. A. J. Duncan
X. Dupac
S. Dusini
S. Farren
S. Ferriol
M. Fraili
E. Franceschi
P. Franzetti
M. Fumana
B. Garilli
W. Gillard
B. Gilli
C. Giocoli
A. Grazian
F. Grupp
L. Guzzo
S. V. H. Haugan
W. Holme
F. Hormuth
A. Hornstrup
K. Jahnke
M. Kümmel
S. Kermiche
A. Kiessling
M. Kilbinger
R. Kohley
M. Kunz
H. Kurki-Suonio
S. Ligori
P. B. Lilje
I. Lloro
E. Maiorano
O. Mansutti
O. Marggraf
K. Markovic
F. Marulli
R. Massey
S. Maurogordato
E. Medinaceli
M. Meneghetti
E. Merlin
G. Meylan
M. Moresco
L. Moscardini
E. Munari
S. M. Niemi
C. Padilla
S. Paltani
F. Pasian
K. Pedersen
V. Pettorino
G. Polenta
M. Poncet
L. Popa
F. Raison
A. Renzi
J. Rhode
G. Riccio
H. -W. Rix
E. Romelli
M. Roncarelli
C. Rosset
E. Rossetti
R. Saglia
D. Sapone
B. Sartori
P. Schneider
M. Scodeggio
A. Secroun
G. Seidel
C. Sirignano
G. Sirri
L. Stanco
P. Tallada-Crespí
D. Tavagnacco
A. N. Taylor
I. Tereno
R. Toledo-Moreo
F. Torradeflot
I. Tutusau
E. A. Valentijn
L. Valenziano
T. Vassallo
Y. Wang
A. Zacchei
G. Zamorani
J. Zoubian
S. Andreon
S. Bardelli A. Boucaud
C. Colodro-Conde
D. Di Ferdinando
J. Graciá-Carpio
V. Lindholm
D. Maino
S. Mei
V. Scottez
F. Sureau
M. Tenti
E. Zucca
A. S. Borlaff
M. Ballardini
A. Biviano
E. Bozzo
C. Burigana
R. Cabanac
A. Cappi
C. S. Carvalho
S. Casa
G. Castignani
A. Cooray
J. Coupon
H. M. Courtoi
J. Cuby
S. Davini
G. De Lucia
G. Desprez
H. Dole
J. A. Escartin
S. Escoffier
M. Farina
S. Fotopoulou
K. Ganga
J. Garcia-Bellido
K. George
F. Giacomini
G. Gozaliasl
H. Hildebrandt
I. Hook
M. Huertas-Company
V. Kansal
E. Keihanen
C. C. Kirkpatrick
A. Loureiro
J. F. Macías-Pérez
M. Magliocchetti
G. Mainetti
S. Marcin
M. Martinelli
N. Martinet
R. B. Metcalf
P. Monaco
G. Morgante
S. Nadathur
A. A. Nucita
L. Patrizii
A. Peel
D. Potter
A. Pourtsidou
M. Pöntinen
P. Reimberg
A. G. Sánchez
Z. Sakr
M. Schirmer
E. Sefusatti
M. Sereno
J. Stadel
R. Teyssier
C. Valieri
J. Valiviita
M. Viel
Bisigello, L.
Conselice, C. J.
Baes, M.
Bolzonella, M.
Brescia, M.
Cavuoti, S.
Cucciati, O.
Humphrey, A.
Hunt, L. K.
Maraston11, C.
Pozzetti, L.
Tortora, C.
van Mierlo, S. E.
Aghanim, N.
Auricchio, N.
Baldi, M.
Bender, R.
Bodendorf, C.
Bonino, D.
Branchini, E.
Brinchmann, J.
Camera, S.
Capobianco, V.
Carbone, C.
Carretero, J.
Castander, F. J.
Castellano, M.
Cimatti, A.
Congedo, G.
Conversi, L.
Copin, Y.
Corcione, L.
Courbin, F.
Cropper, M.
Da Silva, A.
Degaudenzi, H.
Douspis, M.
Dubath, F.
Duncan, C. A. J.
Dupac, X.
Dusini, S.
Farrens, S.
Ferriol, S.
Frailis, M.
Franceschi, E.
Franzetti, P.
Fumana, M.
Garilli, B.
Gillard, W.
Gillis, B.
Giocoli, C.
Grazian, A.
Grupp, F.
Guzzo, L.
Haugan, S. V. H.
Holmes, W.
Hormuth, F.
Hornstrup, A.
Jahnke, K.
Kümmel, M.
Kermiche, S.
Kiessling, A.
Kilbinger, M.
Kohley, R.
Kunz, M.
Kurki-Suonio, H.
Ligori, S.
Lilje, P. B.
Lloro, I.
Maiorano, E.
Mansutti, O.
Marggraf, O.
Markovic, K.
Marulli, F.
Massey, R.
Maurogordato, S.
Medinaceli, E.
Meneghetti, M.
Merlin, E.
Meylan, G.
Moresco, M.
Moscardini, L.
Munari, E.
Niemi, S. M.
Padilla, C.
Paltani, S.
Pasian, F.
Pedersen, K.
Pettorino, V.
Polenta, G.
Poncet, M.
Popa, L.
Raison, F.
Renzi, A.
Rhodes, J.
Riccio, G.
Rix, H. -W.
Romelli, E.
Roncarelli, M.
Rosset, C.
Rossetti, E.
Saglia, R.
Sapone, D.
Sartoris, B.
Schneider, P.
Scodeggio, M.
Secroun, A.
Seidel, G.
Sirignano, C.
Sirri, G.
Stanco, L.
Tallada-Crespí, P.
Tavagnacco, D.
Taylor, A. N.
Tereno, I.
Toledo-Moreo, R.
Torradeflot, F.
Tutusaus, I.
Valentijn, E. A.
Valenziano, L.
Vassallo, T.
Wang, Y.
Zacchei, A.
Zamorani, G.
Zoubian, J.
Andreon, S.
Boucaud, S. Bardelli A.
Colodro-Conde, C.
Di Ferdinando, D.
Graciá-Carpio, J.
Lindholm, V.
Maino, D.
Mei, S.
Scottez, V.
Sureau, F.
Tenti, M.
Zucca, E.
Borlaff, A. S.
Ballardini, M.
Biviano, A.
Bozzo, E.
Burigana, C.
Cabanac, R.
Cappi, A.
Carvalho, C. S.
Casas, S.
Castignani, G.
Cooray, A.
Coupon, J.
Courtois, H. M.
Cuby, J.
Davini, S.
De Lucia, G.
Desprez, G.
Dole, H.
Escartin, J. A.
Escoffier, S.
Farina, M.
Fotopoulou, S.
Ganga, K.
Garcia-Bellido, J.
George, K.
Giacomini, F.
Gozaliasl, G.
Hildebrandt, H.
Hook, I.
Huertas-Company, M.
Kansal, V.
Keihanen, E.
Kirkpatrick, C. C.
Loureiro, A.
Macías-Pérez, J. F.
Magliocchetti, M.
Mainetti, G.
Marcin, S.
Martinelli, M.
Martinet, N.
Metcalf, R. B.
Monaco, P.
Morgante, G.
Nadathur, S.
Nucita, A. A.
Patrizii, L.
Peel, A.
Potter, D.
Pourtsidou, A.
Pöntinen, M.
Reimberg, P.
Sánchez, A. G.
Sakr, Z.
Schirmer, M.
Sefusatti, E.
Sereno, M.
Stadel, J.
Teyssier, R.
Valieri, C.
Valiviita111, J.
Viel, M.
Institut de Physique des 2 Infinis de Lyon (IP2I Lyon)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Centre de Physique des Particules de Marseille (CPPM)
Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
Observatoire de la Côte d'Azur (OCA)
Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Centre National d'Études Spatiales [Toulouse] (CNES)
AstroParticule et Cosmologie (APC (UMR_7164))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Institut d'Astrophysique de Paris (IAP)
Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Institut de recherche en astrophysique et planétologie (IRAP)
Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
Laboratoire d'Astrophysique de Marseille (LAM)
Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP)
Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Physique Subatomique et de Cosmologie (LPSC)
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
Centre de Calcul de l'IN2P3 (CC-IN2P3)
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
Source :
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Monthly Notices of the Royal Astronomical Society, 520(3). Oxford University Press, Collaboration, E, Bisigello, L, Conselice, C J, Baes, M, Bolzonella, M, Brescia, M, Cavuoti, S, Cucciati, O, Humphrey, A, Hunt, L K, Maraston, C, Pozzetti, L, Tortora, C, van Mierlo, S E, Aghanim, N, Auricchio, N, Baldi, M, Bender, R, Bodendorf, C, Bonino, D, Branchini, E, Brinchmann, J, Camera, S, Capobianco, V, Carbone, C, Carretero, J, Castander, F J, Castellano, M, Cimatti, A, Congedo, G, Conversi, L, Copin, Y, Corcione, L, Courbin, F, Cropper, M, Da Silva, A, Degaudenzi, H, Douspis, M, Dubath, F, Duncan, C A J, Dupac, X, Dusini, S, Farrens, S, Ferriol, S, Frailis, M, Franceschi, E, Franzetti, P, Fumana, M, Garilli, B, Gillard, W, Gillis, B, Giocoli, C, Grazian, A, Grupp, F, Guzzo, L, Haugan, S V H, Holmes, W, Hormuth, F, Hornstrup, A, Jahnke, K, Kümmel, M, Kermiche, S, Kiessling, A, Kilbinger, M, Kohley, R, Kunz, M, Kurki-Suonio, H, Ligori, S, Lilje, P B, Lloro, I, Maiorano, E, Mansutti, O, Marggraf, O, Markovic, K, Marulli, F, Massey, R, Maurogordato, S, Medinaceli, E, Meneghetti, M, Merlin, E, Meylan, G, Moresco, M, Moscardini, L, Munari, E, Niemi, S M, Padilla, C, Paltani, S, Pasian, F, Pedersen, K, Pettorino, V, Polenta, G, Poncet, M, Popa, L, Raison, F, Renzi, A, Rhodes, J, Riccio, G, Rix, H-W, Romelli, E, Roncarelli, M, Rosset, C, Rossetti, E, Saglia, R, Sapone, D, Sartoris, B, Schneider, P, Scodeggio, M, Secroun, A, Seidel, G, Sirignano, C, Sirri, G, Stanco, L, Tallada-Crespí, P, Tavagnacco, D, Taylor, A N, Tereno, I, Toledo-Moreo, R, Torradeflot, F, Tutusaus, I, Valentijn, E A, Valenziano, L, Vassallo, T, Wang, Y, Zacchei, A, Zamorani, G, Zoubian, J, Andreon, S, Bardelli, S, Boucaud, A, Colodro-Conde, C, Ferdinando, D D, Graciá-Carpio, J, Lindholm, V, Maino, D, Mei, S, Scottez, V, Sureau, F, Tenti, M, Zucca, E, Borlaff, A S, Ballardini, M, Biviano, A, Bozzo, E, Burigana, C, Cabanac, R, Cappi, A, Carvalho, C S, Casas, S, Castignani, G, Cooray, A, Coupon, J, Courtois, H M, Cuby, J, Davini, S, De Lucia, G, Desprez, G, Dole, H, Escartin, J A, Escoffier, S, Farina, M, Fotopoulou, S, Ganga, K, Garcia-Bellido, J, George, K, Giacomini, F, Gozaliasl, G, Hildebrandt, H, Hook, I, Huertas-Company, M, Kansal, V, Keihanen, E, Kirkpatrick, C C, Loureiro, A, Macías-Pérez, J F, Magliocchetti, M, Mainetti, G, Marcin, S, Martinelli, M, Martinet, N, Metcalf, R B, Monaco, P, Morgante, G, Nadathur, S, Nucita, A A, Patrizii, L, Peel, A, Potter, D, Pourtsidou, A, Pöntinen, M, Reimberg, P, Sánchez, A G, Sakr, Z, Schirmer, M, Sefusatti, E, Sereno, M, Stadel, J, Teyssier, R, Valieri, C, Valiviita, J & Viel, M 2023, ' Euclid preparation – XXIII. Derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images ', Monthly Notices of the Royal Astronomical Society, vol. 520, no. 3, pp. 3529-3548 . https://doi.org/10.1093/mnras/stac3810, Euclid Collaboration 2023, ' Euclid preparation – XXIII. Derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images ', Monthly Notices of the Royal Astronomical Society, vol. 520, no. 3, pp. 3529-3548 . https://doi.org/10.1093/mnras/stac3810, Monthly Notices of the Royal Astronomical Society: Letters, Monthly Notices of the Royal Astronomical Society: Letters, 2023, 520 (3), pp.3529-3548. ⟨10.1093/mnras/stac3810⟩
Publication Year :
2023
Publisher :
Oxford University Press (OUP), 2023.

Abstract

Next generation telescopes, like Euclid, Rubin/LSST, and Roman, will open new windows on the Universe, allowing us to infer physical properties for tens of millions of galaxies. Machine learning methods are increasingly becoming the most efficient tools to handle this enormous amount of data, because they are often faster and more accurate than traditional methods. We investigate how well redshifts, stellar masses, and star-formation rates (SFR) can be measured with deep learning algorithms for observed galaxies within data mimicking the Euclid and Rubin/LSST surveys. We find that Deep Learning Neural Networks and Convolutional Neutral Networks (CNN), which are dependent on the parameter space of the training sample, perform well in measuring the properties of these galaxies and have a better accuracy than methods based on spectral energy distribution fitting. CNNs allow the processing of multi-band magnitudes together with $H_{\scriptscriptstyle\rm E}$-band images. We find that the estimates of stellar masses improve with the use of an image, but those of redshift and SFR do not. Our best results are deriving i) the redshift within a normalised error of less than 0.15 for 99.9$\%$ of the galaxies with S/N>3 in the $H_{\scriptscriptstyle\rm E}$-band; ii) the stellar mass within a factor of two ($\sim0.3 \rm dex$) for 99.5$\%$ of the considered galaxies; iii) the SFR within a factor of two ($\sim0.3 \rm dex$) for $\sim$70$\%$ of the sample. We discuss the implications of our work for application to surveys as well as how measurements of these galaxy parameters can be improved with deep learning.<br />accepted for publication in MNRAS, 21 pages, 22 figures, 6 tables

Details

Language :
English
ISSN :
00358711, 13652966, and 17453933
Database :
OpenAIRE
Journal :
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Monthly Notices of the Royal Astronomical Society, 520(3). Oxford University Press, Collaboration, E, Bisigello, L, Conselice, C J, Baes, M, Bolzonella, M, Brescia, M, Cavuoti, S, Cucciati, O, Humphrey, A, Hunt, L K, Maraston, C, Pozzetti, L, Tortora, C, van Mierlo, S E, Aghanim, N, Auricchio, N, Baldi, M, Bender, R, Bodendorf, C, Bonino, D, Branchini, E, Brinchmann, J, Camera, S, Capobianco, V, Carbone, C, Carretero, J, Castander, F J, Castellano, M, Cimatti, A, Congedo, G, Conversi, L, Copin, Y, Corcione, L, Courbin, F, Cropper, M, Da Silva, A, Degaudenzi, H, Douspis, M, Dubath, F, Duncan, C A J, Dupac, X, Dusini, S, Farrens, S, Ferriol, S, Frailis, M, Franceschi, E, Franzetti, P, Fumana, M, Garilli, B, Gillard, W, Gillis, B, Giocoli, C, Grazian, A, Grupp, F, Guzzo, L, Haugan, S V H, Holmes, W, Hormuth, F, Hornstrup, A, Jahnke, K, Kümmel, M, Kermiche, S, Kiessling, A, Kilbinger, M, Kohley, R, Kunz, M, Kurki-Suonio, H, Ligori, S, Lilje, P B, Lloro, I, Maiorano, E, Mansutti, O, Marggraf, O, Markovic, K, Marulli, F, Massey, R, Maurogordato, S, Medinaceli, E, Meneghetti, M, Merlin, E, Meylan, G, Moresco, M, Moscardini, L, Munari, E, Niemi, S M, Padilla, C, Paltani, S, Pasian, F, Pedersen, K, Pettorino, V, Polenta, G, Poncet, M, Popa, L, Raison, F, Renzi, A, Rhodes, J, Riccio, G, Rix, H-W, Romelli, E, Roncarelli, M, Rosset, C, Rossetti, E, Saglia, R, Sapone, D, Sartoris, B, Schneider, P, Scodeggio, M, Secroun, A, Seidel, G, Sirignano, C, Sirri, G, Stanco, L, Tallada-Crespí, P, Tavagnacco, D, Taylor, A N, Tereno, I, Toledo-Moreo, R, Torradeflot, F, Tutusaus, I, Valentijn, E A, Valenziano, L, Vassallo, T, Wang, Y, Zacchei, A, Zamorani, G, Zoubian, J, Andreon, S, Bardelli, S, Boucaud, A, Colodro-Conde, C, Ferdinando, D D, Graciá-Carpio, J, Lindholm, V, Maino, D, Mei, S, Scottez, V, Sureau, F, Tenti, M, Zucca, E, Borlaff, A S, Ballardini, M, Biviano, A, Bozzo, E, Burigana, C, Cabanac, R, Cappi, A, Carvalho, C S, Casas, S, Castignani, G, Cooray, A, Coupon, J, Courtois, H M, Cuby, J, Davini, S, De Lucia, G, Desprez, G, Dole, H, Escartin, J A, Escoffier, S, Farina, M, Fotopoulou, S, Ganga, K, Garcia-Bellido, J, George, K, Giacomini, F, Gozaliasl, G, Hildebrandt, H, Hook, I, Huertas-Company, M, Kansal, V, Keihanen, E, Kirkpatrick, C C, Loureiro, A, Macías-Pérez, J F, Magliocchetti, M, Mainetti, G, Marcin, S, Martinelli, M, Martinet, N, Metcalf, R B, Monaco, P, Morgante, G, Nadathur, S, Nucita, A A, Patrizii, L, Peel, A, Potter, D, Pourtsidou, A, Pöntinen, M, Reimberg, P, Sánchez, A G, Sakr, Z, Schirmer, M, Sefusatti, E, Sereno, M, Stadel, J, Teyssier, R, Valieri, C, Valiviita, J & Viel, M 2023, ' Euclid preparation – XXIII. Derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images ', Monthly Notices of the Royal Astronomical Society, vol. 520, no. 3, pp. 3529-3548 . https://doi.org/10.1093/mnras/stac3810, Euclid Collaboration 2023, ' Euclid preparation – XXIII. Derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images ', Monthly Notices of the Royal Astronomical Society, vol. 520, no. 3, pp. 3529-3548 . https://doi.org/10.1093/mnras/stac3810, Monthly Notices of the Royal Astronomical Society: Letters, Monthly Notices of the Royal Astronomical Society: Letters, 2023, 520 (3), pp.3529-3548. ⟨10.1093/mnras/stac3810⟩
Accession number :
edsair.doi.dedup.....d74f3a8c171a04e04164e04a549980c3
Full Text :
https://doi.org/10.1093/mnras/stac3810