Back to Search Start Over

Long non‑coding RNA plasmacytoma variant translocation 1 gene promotes the development of cervical cancer via the NF‑κB pathway

Authors :
Hongjuan Yang
Hao Zou
Lei Wang
Aiping Chen
Yankui Wang
Jinwen Jiao
Huijun Chu
Chang Wang
Source :
Molecular medicine reports. 20(3)
Publication Year :
2018

Abstract

The long noncoding RNA plasmacytoma variant translocation 1 gene (LncRNA PVT1) has an important role in tumor occurrence and development, yet the role and underlying molecular mechanisms of this RNA in cervical cancer have not yet been elucidated. In the present study, three cervical cancer cell lines (HeLa, Ca Ski and SiHa) were used to verify how LncRNA PVT1 mediates cervical cancer development, and the H8 cell line was used as a control. A LncRNA PVT1 overexpression vector or small interfering RNAs targeting LncRNA PVT1 were transfected into cervical cancer cells to generate LncRNA PVT1 overexpression and silencing in these cells. LncRNA PVT1 overexpression accelerated the growth of cervical cancer cells by advancing the cell cycle and inhibiting cellular apoptosis; increases in Cyclin D1 (CCND1) mRNA and activated Bcl‑2 protein expression levels also supported this finding. Furthermore, NF‑κB activation and expression was increased by LncRNA PVT1 overexpression. In addition, NF‑κB activation or inhibition induced changes in cell viability, accompanied by changes in CCND1 and Bcl‑2 expression. Increases or decreases in microRNA‑16 (miR‑16) expression (using miR mimics and inhibitors) also corresponded to changes in LncRNA PVT1 expression, in vitro. miR‑16 mimics and inhibitor had opposite effects to those of NF‑κB activity, and miR‑16 was demonstrated to directly interact with the NF‑κB gene as measured using the dual‑luciferase assay. In summary, LncRNA PVT1 inhibits the effect of miR‑16, promoting the cell cycle and inhibiting cellular apoptosis of cervical cancer cells, potentially via the NF‑κB pathway. The data from the present study will contribute to the current knowledge surrounding the theoretical basis of cervical cancer and provide a new perspective for the treatment of cervical cancer.

Details

ISSN :
17913004
Volume :
20
Issue :
3
Database :
OpenAIRE
Journal :
Molecular medicine reports
Accession number :
edsair.doi.dedup.....d776d3e6a62be8c14357c50a3ef2a291