Back to Search Start Over

Mechanistic Insight into Dioxygen Evolution from Diastereomeric μ-Peroxo Dinuclear Co(III) Complexes Based on Stoichiometric Electron-Transfer Oxidation

Authors :
Tomoya Ishizuka
Dachao Hong
Hiroaki Kotani
Takahiko Kojima
Kenta Satonaka
Source :
Inorganic Chemistry. 58:3676-3682
Publication Year :
2019
Publisher :
American Chemical Society (ACS), 2019.

Abstract

Stoichiometric electron-transfer (ET) oxidation of two diastereomeric μ-peroxo-μ-hydroxo dinuclear Co(III) complexes with tris(2-pyridylmethyl)amine (TPA) was examined to scrutinize the reaction mechanism of O2 evolution from the peroxo complexes, as seen in the final step in water oxidation by a Co(III)-TPA complex. The two isomeric Co(III)-peroxo complexes were synthesized and selectively isolated by recrystallization under different conditions. Although cyclic voltammograms of the two isomers in aqueous solutions showed one reversible wave at 1.1 V vs NHE at pH 2.0, two oxidation waves were observed at 1.0 and 1.4 V at pH 7.0 in the aqueous solutions, the latter of which is responsible for the O2-releasing process. At pH 7, one diastereomer showed higher reactivity than the other in O2 evolution, indicating the importance of structures of the μ-peroxo complexes in the reaction. In order to clarify the O2-evolving mechanism, we performed electron paramagnetic resonance (EPR) and resonance Raman (RR) measurements for characterizing one-electron oxidized species: The observed EPR and RR signals supported the formation of μ-superoxo-μ-hydroxo dinuclear Co(III) complexes; however, no characteristic difference was observed between two isomers in the EPR parameters including g values and superhyperfine coupling constants. ET-oxidation rate constants of the isomers were determined to be much faster than the O2-evolving rate constants, indicating that the O2-releasing step is the rate-determining step in the O2 evolution through the stoichiometric ET oxidation of the dinuclear Co(III)-μ-peroxo complexes. Therefore, the difference of reactivity in the O2 evolution for the two isomers should be derived from the thermodynamic stability of two-electron oxidized species of the dinuclear Co(III)-μ-peroxo complexes, μ-dioxygen-μ-hydroxo dinuclear Co(III) intermediates.

Details

ISSN :
1520510X and 00201669
Volume :
58
Database :
OpenAIRE
Journal :
Inorganic Chemistry
Accession number :
edsair.doi.dedup.....d792320fb631d7af562f42f610a65d44
Full Text :
https://doi.org/10.1021/acs.inorgchem.8b03245