Back to Search Start Over

Perbandingan Metode ResNet, YoloV3, dan TinyYoloV3 pada Deteksi Citra dengan Pemrograman Python

Authors :
Agung Slamet Riyadi
Ire Puspa Wardhani
Maria Sri Wulandari
Susi Widayati
Source :
PETIR; Vol. 15 No. 1 (2022): PETIR (Jurnal Pengkajian Dan Penerapan Teknik Informatika); 135-144
Publication Year :
2022
Publisher :
Institut Teknologi PLN, 2022.

Abstract

Pengolahan citra (image processing) adalah teknik mengolah citra yang mentransformasikan citra masukan menjadi citra lain agar keluaran memiliki kualitas yang lebih baik dibandingkan kualitas citra masukan. Deteksi objek dalam digital image processing adalah suatu proses yang digunakan untuk menentukan keberadaan objek tertentu di dalam suatu citra digital. Proses deteksi tersebut dapat dilakukan dengan berbagai macam metode yang umumnya melakukan pembacaan fitur-fitur dari seluruh objek pada citra input. Pada pendeteksian objek tersebut terdapat beberapa metode beberapa diantaranya yaitu metode ResNet, YOLOv3 dan TinyYOLOv3. Dalam penelitian ini akan dilakukan perbedaan ketiga metode tersebut. Tujuan dari ujicoba dalam penelitian ini adalah mengetahui lebih jauh hasil deteksi objek pada citra dengan tingkat keakuratan yang baik. Dan penelitian ini dapat membutkikan bahwa hasil pendeteksian objek dengan menggunakan model Yolov3, hasil keakuratannya lebih tinggi dibandingkan dengan model ResNet dan model Tiny Yolo.

Details

Language :
English
ISSN :
19789262 and 26555018
Database :
OpenAIRE
Journal :
PETIR
Accession number :
edsair.doi.dedup.....d7afcf1d256bf7f1a2651b0749a345fa
Full Text :
https://doi.org/10.33322/petir.v15i1