Back to Search Start Over

Sur les identités polynomiales vérifiées par les algèbres de rétrocroisement

Authors :
Cristián Mallol
Richard Varro
Universidad de La Frontera, Temuco, Chile
Institut Montpelliérain Alexander Grothendieck (IMAG)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Source :
Communications in Algebra, Communications in Algebra, Taylor & Francis, 2016, 45, pp.3555-3586. ⟨10.1080/00927872.2016.1238478⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

International audience; We study the ideal of polynomial identities of a single indeterminate satisfied by all backcrossing algebras. For this we distinguish two categories according to whether or not these algebras satisfy an identity for the plenary powers. For each category, we give the generators for the vector space of identities, a condition for any object belonging to one of these two categories verify a given identity, a necessary and sufficient condition that a polynomial is an identity and we study the existence of an idempotent element. We give a method which brings the search of identities satified by the backcrossing algebras to the solution of linear systems and we illustrate this method by constructing generators of homogeneous and non homogeneous identities of degrees less than 8.

Details

Language :
English
ISSN :
00927872 and 15324125
Database :
OpenAIRE
Journal :
Communications in Algebra, Communications in Algebra, Taylor & Francis, 2016, 45, pp.3555-3586. ⟨10.1080/00927872.2016.1238478⟩
Accession number :
edsair.doi.dedup.....d7d24e0c61923fec636041b9b273cf45
Full Text :
https://doi.org/10.1080/00927872.2016.1238478⟩