Back to Search
Start Over
Sur les identités polynomiales vérifiées par les algèbres de rétrocroisement
- Source :
- Communications in Algebra, Communications in Algebra, Taylor & Francis, 2016, 45, pp.3555-3586. ⟨10.1080/00927872.2016.1238478⟩
- Publication Year :
- 2016
- Publisher :
- HAL CCSD, 2016.
-
Abstract
- International audience; We study the ideal of polynomial identities of a single indeterminate satisfied by all backcrossing algebras. For this we distinguish two categories according to whether or not these algebras satisfy an identity for the plenary powers. For each category, we give the generators for the vector space of identities, a condition for any object belonging to one of these two categories verify a given identity, a necessary and sufficient condition that a polynomial is an identity and we study the existence of an idempotent element. We give a method which brings the search of identities satified by the backcrossing algebras to the solution of linear systems and we illustrate this method by constructing generators of homogeneous and non homogeneous identities of degrees less than 8.
- Subjects :
- Altitude of a polynomial
backcrossing algebras
Pure mathematics
Polynomial
T-ideal 2010 MATHEMATICS SUBJECT CLASSIFICATION Primary: 17D92
[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]
010103 numerical & computational mathematics
01 natural sciences
Identity (mathematics)
idempotent element
rooted trees
ω-polynomial identities
Ideal (order theory)
Idempotent element
0101 mathematics
Mathematics
mutation algebras
Algebra and Number Theory
010102 general mathematics
Linear system
Object (philosophy)
Specht's question
Algebra
Baric algebras
Secondary: 17A30
Indeterminate
Vector space
Subjects
Details
- Language :
- English
- ISSN :
- 00927872 and 15324125
- Database :
- OpenAIRE
- Journal :
- Communications in Algebra, Communications in Algebra, Taylor & Francis, 2016, 45, pp.3555-3586. ⟨10.1080/00927872.2016.1238478⟩
- Accession number :
- edsair.doi.dedup.....d7d24e0c61923fec636041b9b273cf45
- Full Text :
- https://doi.org/10.1080/00927872.2016.1238478⟩