Back to Search Start Over

Crystal Structure of the Extracellular Domain of a Bacterial Ligand-Gated Ion Channel

Authors :
Ahmed Haouz
Marc Delarue
Chantal Le Poupon
Nicolas Bocquet
Hugues Nury
Bertrand Raynal
Pierre-Jean Corringer
Dynamique Structurale des Macromolécules (DSM)
Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS)
Récepteurs-Canaux
Biophysique des Macromolécules et de leurs Interactions
Cristallogenèse et Diffraction des Rayons X (Plate-forme/PF6)
This work was supported by grants from the Région Ile-de-France, the Association Française contre les Myopathies, the Collège de France, the Commission of the European Community (grant Neurocypress), and the Centre National de la Recherche Scientifique.
We thank FP5 and FP6 (I.P.) for help in protein analysis, production of the SeMet mutant (J. Bellalou), and crystallization experiments. We thank Frederic Poitevin for help in modeling TMD in the hexameric mode and Felix Rey for helpful comments on the manuscript.
European Project: 202088,EC:FP7:HEALTH,FP7-HEALTH-2007-A,NEUROCYPRES(2008)
Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Molecular Biology, Journal of Molecular Biology, Elsevier, 2010, 395 (5), pp.1114-1127. ⟨10.1016/j.jmb.2009.11.024⟩, Journal of Molecular Biology, 2010, 395 (5), pp.1114-1127. ⟨10.1016/j.jmb.2009.11.024⟩
Publication Year :
2010
Publisher :
HAL CCSD, 2010.

Abstract

International audience; The crystal structure of the extracellular domain (ECD) of the pentameric ligand-gated ion-channel from Gloeobacter violaceus (GLIC) was solved at neutral pH at 2.3 A resolution in two crystal forms, showing a surprising hexameric quaternary structure with a 6-fold axis replacing the expected 5-fold axis. While each subunit retains the usual beta-sandwich immunoglobulin-like fold, small deviations from the whole GLIC structure indicate zones of differential flexibility. The changes in interface between two adjacent subunits in the pentamer and the hexamer can be described in a downward translation by one inter-strand distance and a global rotation of the second subunit, using the first one for superposition. While global characteristics of the interface, such as the buried accessible surface area, do not change very much, most of the atom-atom interactions are rearranged. It thus appears that the transmembrane domain is necessary for the proper oligomeric assembly of GLIC and that there is an intrinsic plasticity or polymorphism in possible subunit-subunit interfaces at the ECD level, the latter behaving as a monomer in solution. Possible functional implications of these novel structural data are discussed in the context of the allosteric transition of this family of proteins. In addition, we propose a novel way to quantify elastic energy stored in the interface between subunits, which indicates a tenser interface for the open form than for the closed form (rest state). The hexameric or pentameric forms of the ECD have a similar negative curvature in their subunit-subunit interface, while acetylcholine binding proteins have a smaller and positive curvature that increases from the apo to the holo form.

Details

Language :
English
ISSN :
00222836 and 10898638
Database :
OpenAIRE
Journal :
Journal of Molecular Biology, Journal of Molecular Biology, Elsevier, 2010, 395 (5), pp.1114-1127. ⟨10.1016/j.jmb.2009.11.024⟩, Journal of Molecular Biology, 2010, 395 (5), pp.1114-1127. ⟨10.1016/j.jmb.2009.11.024⟩
Accession number :
edsair.doi.dedup.....d7ee175d07578fd73f370bd9bb8a08ce
Full Text :
https://doi.org/10.1016/j.jmb.2009.11.024⟩