Back to Search
Start Over
Sparse P-hard sets yield space-efficient algorithms
- Source :
- FOCS, Scopus-Elsevier
- Publication Year :
- 2002
- Publisher :
- IEEE Comput. Soc. Press, 2002.
-
Abstract
- J. Hartmanis (1978) conjectured that there exist no sparse complete sets for P under logspace many-one reductions. In this paper, in support of the conjecture, it is shown that if P has sparse hard sets under logspace many-one reductions, then P/spl sube/DSPACE[log/sup 2/n]. The result follows from a more general statement: if P has 2/sup polylog/ sparse hard sets under poly-logarithmic space-computable many-one reductions, then P/spl sube/DSPACE[polylog].
Details
- Database :
- OpenAIRE
- Journal :
- Proceedings of IEEE 36th Annual Foundations of Computer Science
- Accession number :
- edsair.doi.dedup.....d81e905ac271257f7eca0d95f4af16ae
- Full Text :
- https://doi.org/10.1109/sfcs.1995.492491