Back to Search Start Over

Sparse P-hard sets yield space-efficient algorithms

Authors :
Mitsunori Ogihara
Source :
FOCS, Scopus-Elsevier
Publication Year :
2002
Publisher :
IEEE Comput. Soc. Press, 2002.

Abstract

J. Hartmanis (1978) conjectured that there exist no sparse complete sets for P under logspace many-one reductions. In this paper, in support of the conjecture, it is shown that if P has sparse hard sets under logspace many-one reductions, then P/spl sube/DSPACE[log/sup 2/n]. The result follows from a more general statement: if P has 2/sup polylog/ sparse hard sets under poly-logarithmic space-computable many-one reductions, then P/spl sube/DSPACE[polylog].

Details

Database :
OpenAIRE
Journal :
Proceedings of IEEE 36th Annual Foundations of Computer Science
Accession number :
edsair.doi.dedup.....d81e905ac271257f7eca0d95f4af16ae
Full Text :
https://doi.org/10.1109/sfcs.1995.492491