Back to Search Start Over

Assessing invasiveness of subsolid lung adenocarcinomas with combined attenuation and geometric feature models

Authors :
Constance de Margerie-Mellon
Anastasia Oikonomou
Alexander A. Bankier
Paul A. VanderLaan
Benedikt H. Heidinger
Pascal Salazar
Ritu R. Gill
Elsie T Nguyen
Mayra A Medina
Source :
Scientific Reports, Scientific Reports, Vol 10, Iss 1, Pp 1-12 (2020)
Publication Year :
2020

Abstract

The aim of this study was to develop and test multiclass predictive models for assessing the invasiveness of individual lung adenocarcinomas presenting as subsolid nodules on computed tomography (CT). 227 lung adenocarcinomas were included: 31 atypical adenomatous hyperplasia and adenocarcinomas in situ (class H1), 64 minimally invasive adenocarcinomas (class H2) and 132 invasive adenocarcinomas (class H3). Nodules were segmented, and geometric and CT attenuation features including functional principal component analysis features (FPC1 and FPC2) were extracted. After a feature selection step, two predictive models were built with ordinal regression: Model 1 based on volume (log) (logarithm of the nodule volume) and FPC1, and Model 2 based on volume (log) and Q.875 (CT attenuation value at the 87.5% percentile). Using the 200-repeats Monte-Carlo cross-validation method, these models provided a multiclass classification of invasiveness with discriminative power AUCs of 0.83 to 0.87 and predicted the class probabilities with less than a 10% average error. The predictive modelling approach adopted in this paper provides a detailed insight on how the value of the main predictors contribute to the probability of nodule invasiveness and underlines the role of nodule CT attenuation features in the nodule invasiveness classification.

Details

ISSN :
20452322
Volume :
10
Issue :
1
Database :
OpenAIRE
Journal :
Scientific reports
Accession number :
edsair.doi.dedup.....d88449814d8d7b86eafdaa4e2c5df923