Back to Search
Start Over
A model for long-term infection of bovine papillomavirus type 1 in Saccharomyces cerevisiae
- Source :
- Acta virologica. 65
- Publication Year :
- 2021
- Publisher :
- Frontiers Media SA, 2021.
-
Abstract
- We have previously reported that bovine papillomavirus type 1 (BPV1) can replicate its genome and produces infectious virus-like particles in short-term BPV1 virion-infected Sacharomyces cerevisiae (Zhao and Frazer, 2002). Here, we report viral RNA transcription and L1 capsid protein expression in long-term BPV1 virion-infected S. cerevisiae culture. Northern blot hybridization showed that viral RNA was detected in long-term BPV1-infected S. cerevisiae cultures (82-108 days). The levels of the viral RNA transcription varied significantly over the long time period, which showed active transcription at an early stage (Day 3 to Day 16), weak transcription at a middle stage (Day 23 to Day 45) and stable transcription at the late stage of culture (Day 55 to Day 82/85/95). Three major BPV1 transcripts of 4.3, 2.6 and 1.8 Kb were identified, with 4.3 Kb a minor transcript and the 1.8 Kb the most prominent transcript compared with the 2.6 Kb species. Immunoblotting showed that L1 capsid protein was expressed, with its variable amounts corresponding to the levels of RNA transcription over the time period. 35S-methionine/cysteine labeling and immunoprecipitation proved that the detected L1 protein was newly synthesized in BPV1-infected S. cerevisiae cultures. 33.3-54.2% of the cell colonies expressed L1 protein. Thus, the S. cerevisiae system, as a promising model, may be used not only for the study of virus like particle formation of BPV1 in vitro, but also for further functional analysis of individual viral genes in BPV1 life cycle. Keywords: BPV1; viral RNA transcription; expression of L1 capsid protein; virion-infected Saccharomyces cerevisiae.
Details
- Language :
- English
- ISSN :
- 13362305
- Volume :
- 65
- Database :
- OpenAIRE
- Journal :
- Acta virologica
- Accession number :
- edsair.doi.dedup.....d9386a1c57aeaf20578928433b93fd34
- Full Text :
- https://doi.org/10.4149/av_2021_204