Back to Search
Start Over
Redox-controlled potassium intercalation into two polyaromatic hydrocarbon solids
- Source :
- Nature Chemistry
- Publication Year :
- 2016
-
Abstract
- Alkali metal intercalation into polyaromatic hydrocarbons (PAHs) has been studied intensely after reports of superconductivity in a number of potassium- and rubidium-intercalated materials. There are, however, no reported crystal structures to inform our understanding of the chemistry and physics because of the complex reactivity of PAHs with strong reducing agents at high temperature. Here we present the synthesis of crystalline K2Pentacene and K2Picene by a solid–solid insertion protocol that uses potassium hydride as a redox-controlled reducing agent to access the PAH dianions, and so enables the determination of their crystal structures. In both cases, the inserted cations expand the parent herringbone packings by reorienting the molecular anions to create multiple potassium sites within initially dense molecular layers, and thus interact with the PAH anion π systems. The synthetic and crystal chemistry of alkali metal intercalation into PAHs differs from that into fullerenes and graphite, in which the cation sites are pre-defined by the host structure.
- Subjects :
- Solid-state chemistry
Crystal chemistry
General Chemical Engineering
Potassium
Intercalation (chemistry)
Inorganic chemistry
chemistry.chemical_element
02 engineering and technology
General Chemistry
Crystal structure
021001 nanoscience & nanotechnology
Alkali metal
01 natural sciences
chemistry.chemical_compound
chemistry
Potassium hydride
0103 physical sciences
Reactivity (chemistry)
QD
010306 general physics
0210 nano-technology
QC
Subjects
Details
- ISSN :
- 17554349 and 17554330
- Volume :
- 9
- Issue :
- 7
- Database :
- OpenAIRE
- Journal :
- Nature chemistry
- Accession number :
- edsair.doi.dedup.....d974d2cabc383a5640ac479bc958ea5e