Back to Search Start Over

Resolution of the colocation problem in satellite quantum tests of the universality of free fall

Authors :
Dennis Schlippert
Peter Wolf
Sina Loriani
Ernst M. Rasel
Wolfgang Ertmer
Naceur Gaaloul
Franck Pereira Dos Santos
Christian Schubert
Systèmes de Référence Temps Espace (SYRTE)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Source :
Phys.Rev.D, Phys.Rev.D, 2020, 102, pp.124043. ⟨10.1103/PhysRevD.102.124043⟩, Physical Review D 102 (2020), Nr. 12
Publication Year :
2020
Publisher :
American Physical Society (APS), 2020.

Abstract

A major challenge common to all Galilean drop tests of the Universality of Free Fall (UFF) is the required control over the initial kinematics of the two test masses upon release due to coupling to gravity gradients and rotations. In this work, we present a two-fold mitigation strategy to significantly alleviate the source preparation requirements in space-borne quantum tests of the UFF, using a compensation mechanism together with signal demodulation. To this end, we propose a scheme to reduce the gravity-gradient-induced uncertainties in an atom-interferometric experiment in a dedicated satellite mission and assess the experimental feasibility. We find that with moderate parameters, the requirements on the initial kinematics of the two masses can be relaxed by five orders of magnitude. This does not only imply a significantly reduced mission time but also allows to reduce the differential acceleration uncertainty caused by co-location imperfections below the $10^{-18}$ level.<br />Comment: 12 pages, 3 figures

Details

ISSN :
24700029 and 24700010
Volume :
102
Database :
OpenAIRE
Journal :
Physical Review D
Accession number :
edsair.doi.dedup.....d97d4678160b6ef0854527c461255ad6
Full Text :
https://doi.org/10.1103/physrevd.102.124043