Back to Search Start Over

The Impact of Imbalanced Training Data on Local Matching Learning of Ontologies

Authors :
Franck Ravat
Faiza Ghozzi
Amir Laadhar
Faiez Gargouri
Olivier Teste
Imen Megdiche
Systèmes d’Informations Généralisées (IRIT-SIG)
Institut de recherche en informatique de Toulouse (IRIT)
Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées
Multimedia, InfoRmation systems and Advanced Computing Laboratory (MIRACL)
Faculté des Sciences Economiques et de Gestion de Sfax (FSEG Sfax)
Université de Sfax - University of Sfax-Université de Sfax - University of Sfax
Université Toulouse - Jean Jaurès (UT2J)
Centre National de la Recherche Scientifique - CNRS (FRANCE)
Institut National Polytechnique de Toulouse - INPT (FRANCE)
Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Université Toulouse - Jean Jaurès - UT2J (FRANCE)
Université Toulouse 1 Capitole - UT1 (FRANCE)
Université de Sfax (TUNISIA)
Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Source :
Business Information Systems ISBN: 9783030204846, BIS (1), Proceedings of BIS 2019, 22nd International Conference on Business Information Systems (BIS 2019), 22nd International Conference on Business Information Systems (BIS 2019), Jun 2019, Seville, Spain. pp.162-175, HAL
Publication Year :
2019
Publisher :
Springer International Publishing, 2019.

Abstract

International audience; Matching learning corresponds to the combination of ontology matching and machine learning techniques. This strategy has gained increasing attention in recent years. However, state-of-the-art approaches implementing matching learning strategies are not well-tailored to deal with imbalanced training sets. In this paper, we address the problem of the imbalanced training sets and their impacts on the performance of the matching learning in the context of aligning biomedical ontologies. Our approach is applied to local matching learning, which is a technique used to divide a large ontology matching task into a set of distinct local sub-matching tasks. A local matching task is based on a local classifier built using its balanced local training set. Thus, local classifiers discover the alignment of the local sub-matching tasks. To validate our approach, we propose an experimental study to analyze the impact of applying conventional resampling techniques on the quality of the local matching learning.

Details

ISBN :
978-3-030-20484-6
ISBNs :
9783030204846
Database :
OpenAIRE
Journal :
Business Information Systems ISBN: 9783030204846, BIS (1), Proceedings of BIS 2019, 22nd International Conference on Business Information Systems (BIS 2019), 22nd International Conference on Business Information Systems (BIS 2019), Jun 2019, Seville, Spain. pp.162-175, HAL
Accession number :
edsair.doi.dedup.....d9bbc43e2e840224d83f2c0817782aa1
Full Text :
https://doi.org/10.1007/978-3-030-20485-3_13