Back to Search Start Over

Minimally-invasive estimation of patient-specific end-systolic elastance using a biomechanical heart model

Authors :
Radomir Chabiniok
Dominique Chapelle
Fabrice Vallée
Arthur Le Gall
Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM)
Laboratoire de mécanique des solides (LMS)
Centre National de la Recherche Scientifique (CNRS)-MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)
Service d'Anesthésie-Réanimation [AP-HP Hôpitaux Saint-Louis Lariboisière]
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Lariboisière-Fernand-Widal [APHP]
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)
School of Biomedical Engineering & Imaging Sciences [London]
Guy's and St Thomas' Hospital [London]-King‘s College London
ANAESTASSIST
École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
King‘s College London-Guy's and St Thomas' Hospital [London]
Coudière, Yves
Ozenne, Valéry
Vigmond, Edward
Zemzemi, Nejib
École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris-Centre National de la Recherche Scientifique (CNRS)
Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Hôpital Lariboisière-Université Paris Diderot - Paris 7 (UPD7)
École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Source :
FIMH 2019-10th Functional Imaging and Modelling of the Heart, FIMH 2019-10th Functional Imaging and Modelling of the Heart, Jun 2019, Bordeaux, France, Functional Imaging and Modeling of the Heart ISBN: 9783030219482, FIMH, Le Gall, A, Vallee, F, Chapelle, D & Chabiniok, R 2019, Minimally-invasive estimation of patient-specific end-systolic elastance using a biomechanical heart model . in Y Coudière, V Ozenne, E Vigmond & N Zemzemi (eds), Functional Imaging and Modeling of the Heart-10th International Conference, FIMH 2019, Proceedings . Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11504 LNCS, pp. 266-275 . https://doi.org/10.1007/978-3-030-21949-9_29
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

The end-systolic elastance (\(E_{\text {es}}\)) – the slope of the end-systolic pressure-volume relationship (ESPVR) at the end of ejection phase – has become a reliable indicator of myocardial functional state. The estimation of \(E_{\text {es}}\) by the original multiple-beat method is invasive, which limits its routine usage. By contrast, non-invasive single-beat estimation methods, based on the assumption of the linearity of ESPVR and the uniqueness of the normalised time-varying elastance curve \(E^N(t)\) across subjects and physiology states, have been applied in a number of clinical studies. It is however known that these two assumptions have a limited validity, as ESPVR can be approximated by a linear function only locally, and \(E^N(t)\) obtained from a multi-subject experiment includes a confidence interval around the mean function. Using datasets of 3 patients undergoing general anaesthesia (each containing aortic flow and pressure measurements at baseline and after introducing a vasopressor noradrenaline), we first study the sensitivity of two single-beat methods—by Sensaki et al. and by Chen et al.—to the uncertainty of \(E^N(t)\). Then, we propose a minimally-invasive method based on a patient-specific biophysical modelling to estimate the whole time-varying elastance curve \(E^{\text {model}}(t)\). We compare \(E^{\text {model}}_{\text {es}}\) with the two single-beat estimation methods, and the normalised varying elastance curve \(E^{N,\text {model}}(t)\) with \(E^{N}(t)\) from published physiological experiments.

Details

Language :
English
ISBN :
978-3-030-21948-2
ISBNs :
9783030219482
Database :
OpenAIRE
Journal :
FIMH 2019-10th Functional Imaging and Modelling of the Heart, FIMH 2019-10th Functional Imaging and Modelling of the Heart, Jun 2019, Bordeaux, France, Functional Imaging and Modeling of the Heart ISBN: 9783030219482, FIMH, Le Gall, A, Vallee, F, Chapelle, D & Chabiniok, R 2019, Minimally-invasive estimation of patient-specific end-systolic elastance using a biomechanical heart model . in Y Coudière, V Ozenne, E Vigmond & N Zemzemi (eds), Functional Imaging and Modeling of the Heart-10th International Conference, FIMH 2019, Proceedings . Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11504 LNCS, pp. 266-275 . https://doi.org/10.1007/978-3-030-21949-9_29
Accession number :
edsair.doi.dedup.....d9e9a943421eb0477e175cd76fcf963a
Full Text :
https://doi.org/10.1007/978-3-030-21949-9_29