Back to Search
Start Over
The Dependence of Star Formation Activity on Stellar Mass Surface Density and Sersic Index in zCOSMOS Galaxies at 0.5 <z <0.9 Compared with SDSS Galaxies at 0.04 <z <0.08
- Source :
- The Astrophysical journal letters, The Astrophysical journal letters, Bristol : IOP Publishing, 2009, 694, pp.1099-1114. ⟨10.1088/0004-637X/694/2/1099⟩, The Astrophysical journal letters, 2009, 694, pp.1099-1114. ⟨10.1088/0004-637X/694/2/1099⟩, The Astrophysical Journal, 694(2), 1099-1114. IOP PUBLISHING LTD
- Publication Year :
- 2009
-
Abstract
- One of the key unanswered questions in the study of galaxy evolution is what physical processes inside galaxies drive the changes in the SFRs in individual galaxies that, taken together, produce the large decline in the global star-formation rate density (SFRD) to redshifts since z~2. Many studies of the SFR at intermediate redshifts have been made as a function of the integrated stellar mass of galaxies but these did not use information on the internal structural properties of the galaxies. In this paper we present a comparative study of the dependence of SFRs on the average surface mass densities (SigmaM) of galaxies of different morphological types up to z~1 using the zCOSMOS and SDSS surveys. The main findings about the evolution of these relatively massive galaxies are: 1) There is evidence that, for both SDSS ans zCOSMOS galaxies, the mean specific SFR within a given population (either disk-dominated or bulge-dominated) is independent of SigmaM; 2) The observed SSFR - SigmaM step-function relation is due, at all investigated redshifts, to the changing mix of disk-dominated and bulge-dominated galaxies as surface density increases and the strong difference in the average SSFR between disks and bulges. We also find a modest differential evolution in the size-mass relations of disk and spheroid galaxies; 3) The shape of the median SSFR - SigmaM relation is similar, but with median SSFR values that are about 5-6 times higher in zCOSMOS galaxies than for SDSS, across the whole range of SigmaM, and in both spheroid and disk galaxies. This increase matches that of the global SFRD of the Universe as a whole, emphasizing that galaxies of all types are contributing, proportionally, to the global increase in SFRD in the Universe back to these redshifts (abridged).<br />Comment: Published 2009 in ApJ, 694, 1099
- Subjects :
- Surface (mathematics)
010504 meteorology & atmospheric sciences
Stellar mass
Population
PHYSICAL-PROPERTIES
POPULATION SYNTHESIS
Astrophysics
Astrophysics::Cosmology and Extragalactic Astrophysics
01 natural sciences
galaxies: high-redshift
0103 physical sciences
Galaxy formation and evolution
10. No inequality
education
010303 astronomy & astrophysics
Astrophysics::Galaxy Astrophysics
0105 earth and related environmental sciences
LOCAL UNIVERSE
Physics
EVOLUTION SURVEY COSMOS
REDSHIFT SURVEY
education.field_of_study
Galaxies: evolution
Galaxies: high-redshift
Astronomy and Astrophysics
Space and Planetary Science
FORMING GALAXIES
Star formation
ASSEMBLY HISTORY
DISK GALAXIES
Astrophysics - Astrophysics of Galaxies
Galaxy
Redshift
LUMINOSITY FUNCTION
DIGITAL SKY SURVEY
[SDU.ASTR.GA]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA]
galaxies: evolution
Surface mass
Astrophysics - Cosmology and Nongalactic Astrophysics
Subjects
Details
- Language :
- English
- ISSN :
- 0004637X, 20418205, and 20418213
- Volume :
- 694
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- The Astrophysical Journal
- Accession number :
- edsair.doi.dedup.....d9f512cb4372ee6b0eb06b1d1f64c088