Back to Search
Start Over
Cloning and Characterization of Uronate Dehydrogenases from Two Pseudomonads and Agrobacterium tumefaciens Strain C58
- Source :
- Journal of Bacteriology. 191:1565-1573
- Publication Year :
- 2009
- Publisher :
- American Society for Microbiology, 2009.
-
Abstract
- Uronate dehydrogenase has been cloned from Pseudomonas syringae pv. tomato strain DC3000, Pseudomonas putida KT2440, and Agrobacterium tumefaciens strain C58. The genes were identified by using a novel complementation assay employing an Escherichia coli mutant incapable of consuming glucuronate as the sole carbon source but capable of growth on glucarate. A shotgun library of P. syringae was screened in the mutant E. coli by growing transformed cells on minimal medium containing glucuronic acid. Colonies that survived were evaluated for uronate dehydrogenase, which is capable of converting glucuronic acid to glucaric acid. In this manner, a 0.8-kb open reading frame was identified and subsequently verified to be udh . Homologous enzymes in P. putida and A. tumefaciens were identified based on a similarity search of the sequenced genomes. Recombinant proteins from each of the three organisms expressed in E. coli were purified and characterized. For all three enzymes, the turnover number ( k cat ) with glucuronate as a substrate was higher than that with galacturonate; however, the Michaelis constant ( K m ) for galacturonate was lower than that for glucuronate. The A. tumefaciens enzyme was found to have the highest rate constant ( k cat = 1.9 × 10 2 s −1 on glucuronate), which was more than twofold higher than those of both of the pseudomonad enzymes.
- Subjects :
- Glucuronate
Molecular Sequence Data
Pseudomonas syringae
Molecular cloning
medicine.disease_cause
Microbiology
Glucaric Acid
Glucuronic Acid
Escherichia coli
medicine
Cloning, Molecular
Molecular Biology
biology
Pseudomonas putida
Pseudomonas
Sequence Analysis, DNA
Agrobacterium tumefaciens
biology.organism_classification
Enzymes and Proteins
Aldehyde Oxidoreductases
Recombinant Proteins
Culture Media
Kinetics
Biochemistry
Mutation
Uronate dehydrogenase
Subjects
Details
- ISSN :
- 10985530 and 00219193
- Volume :
- 191
- Database :
- OpenAIRE
- Journal :
- Journal of Bacteriology
- Accession number :
- edsair.doi.dedup.....da14f3fcadba158013d6a4abc26b8054