Back to Search Start Over

NSTX-U theory, modeling and analysis results

Authors :
Walter Guttenfelder
D J Battaglia
Elena Belova
Nicola Bertelli
Mark D Boyer
Choong Seock Chang
Ahmed Diallo
Vinicius N Duarte
Fatima Ebrahimi
Eric Emdee
N Ferraro
Eric Fredrickson
Nikolai N Gorelenkov
William W Heidbrink
Zeki Ilhan
Stanley M Kaye
Eun-Hwa Kim
Andreas Kleiner
Florian M. Laggner
Mate Lampert
Jeff Lestz
Chang Liu
Deyong Liu
Tom Looby
Noah Mandell
Rajesh Maingi
James R Myra
Stefano Munaretto
Mario Podesta
Tariq Rafiq
Roger Raman
Matthew Reinke
Yang Ren
Juan Ruiz Ruiz
Filippo Scotti
Syun'ichi Shiraiwa
Vlad Soukhanovskii
Patrick Vail
Zhirui Wang
Will P Wehner
Anne E White
Roscoe B White
Benjamin J Q Woods
James Yang
Stewart Zweben
Santanu Banerjee
Robert Barchfeld
Ronald E Bell
John Berkery
Amitawa Bhattacharjee
Andreas Bierwage
Gustavo Paganini Canal
Xiang Chen
Cesar Fernando Clauser
Neal A Crocker
C W Domier
Todd E Evans
Manaure Francisquez
Kaifu Gan
Stefan P Gerhardt
Robert James Goldston
Travis K Gray
Ammar Hakim
Gregory W Hammett
Stephen C Jardin
Robert Kaita
Bruce E Koel
Egemen Kolemen
Seung-Hoe Ku
Shigeyuki Kubota
Benoit P LeBlanc
Fred Levinton
Jeremy D Lore
Neville C Luhmann
R. Lunsford
Ricardo Maqueda
Jonathan E Menard
Jacob H Nichols
Masayuki Ono
Jong-Kyu Park
Francesca M Poli
Terry L Rhodes
Juan Riquezes
Dave A Russell
Steve A Sabbagh
Eugenio Schuster
David Smith
Daren P Stotler
Brentley Stratton
Kevin Tritz
Weixing Wang
Brian D Wirth
Source :
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
Publication Year :
2022
Publisher :
IOP Publishing, 2022.

Abstract

The mission of the low aspect ratio spherical tokamak NSTX-U is to advance the physics basis and technical solutions required for optimizing the configuration of next-step steady-state tokamak fusion devices. NSTX-U will ultimately operate at up to 2 MA of plasma current and 1 T toroidal field on axis for 5 seconds, and has available up to 15 MW of Neutral Beam Injection (NBI) power at different tangency radii and 6 MW of High Harmonic Fast Wave (HHFW) heating. With these capabilities NSTX-U will develop the physics understanding and control tools to ramp-up and sustain high performance fully non-inductive plasmas with large bootstrap fraction and enhanced confinement enabled via the low aspect ratio, high beta configuration. With its unique capabilities, NSTX-U research also supports ITER and other critical fusion development needs. Super-Alfvénic ions in beam-heated NSTX-U plasmas access energetic particle parameter space that is relevant for both -heated conventional and low aspect ratio burning plasmas. NSTX-U can also generate very large target heat fluxes to test conventional and innovative plasma exhaust and plasma facing component (PFC) solutions. This paper summarizes recent analysis, theory and modelling progress to advance the tokamak physics basis in the areas of macrostability and 3D fields, energetic particle stability and fast ion transport, thermal transport and pedestal structure, boundary and plasma material interaction, RF heating, scenario optimization and real-time control.

Details

ISSN :
17414326 and 00295515
Volume :
62
Database :
OpenAIRE
Journal :
Nuclear Fusion
Accession number :
edsair.doi.dedup.....da658a41081a6c68dca395062b7ae500
Full Text :
https://doi.org/10.1088/1741-4326/ac5448