Back to Search Start Over

MiR-205 determines the radioresistance of human nasopharyngeal carcinoma by directly targeting PTEN

Authors :
Xudan Wang
Huiling Yang
Sumei Wang
Changju Qu
Zhihui Liang
Rong Zhang
Chun-Hui Su
Mong Hong Lee
Jialing Huang
Ruiying Zhao
Source :
Cell Cycle. 11:785-796
Publication Year :
2012
Publisher :
Informa UK Limited, 2012.

Abstract

Radiotherapy is the primary treatment for nasopharyngeal carcinoma (NPC), but radioresistance severely reduces NPC radiocurability. Here, we have established a radio-resistant NPC cell line, CNE-2R, and investigate the role of miRNAs in radioresistance. The miRNAs microarray assay reveals that miRNAs are differentially expressed between CNE-2R and its parental cell line CNE-2. We find that miR-205 is elevated in CNE-2R. A target prediction algorithm suggests that miR-205 regulates expression of PTEN, a tumor-suppressor. Introducing miR-205 into CNE-2 cells suppresses PTEN protein expression, followed by activation of AKT, increased number of foci formation and reduction of cell apoptosis post-irradiation. On the other hand, knocking down miR-205 in CNE-2R cells compromises the inhibition of PTEN and increases cell apoptosis. Significantly, immunohistochemistry studies demonstrate that PTEN is downregulated at late stages of NPC, and that miR-205 is significantly elevated followed the radiotherapy. Our data conclude that miR-205 contributes to radioresistance of NPC by directly targeting PTEN. Both miR-205 and PTEN are potential predictive biomarkers for radiosensitivity of NPC and may serve as targets for achieve successful radiotherapy in NPC.

Details

ISSN :
15514005 and 15384101
Volume :
11
Database :
OpenAIRE
Journal :
Cell Cycle
Accession number :
edsair.doi.dedup.....da68a36f89e1c667a801698930882eec
Full Text :
https://doi.org/10.4161/cc.11.4.19228