Back to Search
Start Over
Old School Techniques with Modern Capabilities: Kinetics Determination of Dynamical Information Such as Barriers, Multiple Entrance Channel Complexes, Product States, Spin Crossings, and Size Effects in Metallic Ion–Molecule Reactions
- Source :
- The Journal of Physical Chemistry A. 125:3503-3527
- Publication Year :
- 2021
- Publisher :
- American Chemical Society (ACS), 2021.
-
Abstract
- We show how the powerful combination of temperature-dependent kinetics coupled with detailed statistical modeling can be used to derive dynamical information about transition state barrier heights, the importance of multiple entrance channel complexes, crossings between spin surfaces, energetics, product states, and other information for metal-ion reactions. The methods are not new, but with improved computers, ion sources, ion transport, and better detection techniques, the ability to derive such parameters from the combination of methods has improved greatly. Temperature-dependent kinetics is very sensitive to the above list of parameters because the energy is varied in a controlled way that can be easily modeled. The present measurements, performed in our variable-ion source temperature-adjustable selected-ion flow tube (VISTA-SIFT), have been enabled by advances in ion transport and injection improvements so that dim sources can be used. Replacing the quadrupole mass spectrometer detector with a time-of-flight mass spectrometer solved additional problems. Quantum chemical calculations have improved greatly and provide details about the surfaces, as well as frequencies, to use as starting points for the statistical modeling. For ion-molecule reactions, incorporation of both energy and angular momentum effects are important and we have developed an in-house computer program, based on the work of Juergen Troe, to rapidly compare statistical modeling predictions to the experimental data. As we show, modeling the kinetics data can often determine the most important parameters controlling the reactivity and deriving them is much simpler and usually more accurate than detailed ab initio calculations or dynamical modeling. Additionally, we show that even without statistical modeling, temperature-dependent rate constants as a function of metal anion cluster size can be used to show that such species react by the same mechanism as surfaces. In this review, we discuss reactions of metallic atomic ions, small metal oxide ions, mixed metal oxide ions, and a series of metallic anionic cluster reactions with small molecules such as CO, O2, CO2, N2O, CH4, and several other species. Particular attention was paid to reactions involving bond activation pertinent to catalysis.
- Subjects :
- Work (thermodynamics)
Angular momentum
010304 chemical physics
Chemistry
010402 general chemistry
01 natural sciences
0104 chemical sciences
Ion
Ab initio quantum chemistry methods
Chemical physics
0103 physical sciences
Cluster (physics)
Molecule
Physical and Theoretical Chemistry
Quadrupole mass analyzer
Spin-½
Subjects
Details
- ISSN :
- 15205215 and 10895639
- Volume :
- 125
- Database :
- OpenAIRE
- Journal :
- The Journal of Physical Chemistry A
- Accession number :
- edsair.doi.dedup.....da872e81463e7a88c90ebf1292c4b32e