Back to Search Start Over

Identification of Potential Inhibitors from Pyriproxyfen with Insecticidal Activity by Virtual Screening

Authors :
Ryan da Silva Ramos
Carlos Henrique Tomich de Paula da Silva
Williams Jorge da Cruz Macêdo
Joaquín María Campos Rosa
Érica de Menezes Rabelo
Raimundo Nonato Picanço Souto
Josivan da Silva Costa
Alex Bruno Lobato Rodrigues
Rai C. Silva
Cleydson B. R. Santos
Carlton A. Taft
Glauber V da Costa
Source :
Pharmaceuticals, Vol 12, Iss 1, p 20 (2019), Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP, Digibug. Repositorio Institucional de la Universidad de Granada, instname, Pharmaceuticals, Volume 12, Issue 1
Publication Year :
2019
Publisher :
MDPI AG, 2019.

Abstract

Aedes aegypti is the main vector of dengue fever transmission, yellow fever, Zika, and chikungunya in tropical and subtropical regions and it is considered to cause health risks to millions of people in the world. In this study, we search to obtain new molecules with insecticidal potential against Ae. aegypti via virtual screening. Pyriproxyfen was chosen as a template compound to search molecules in the database Zinc_Natural_Stock (ZNSt) with structural similarity using ROCS (rapid overlay of chemical structures) and EON (electrostatic similarity) software, and in the final search, the top 100 were selected. Subsequently, in silico pharmacokinetic and toxicological properties were determined resulting in a total of 14 molecules, and these were submitted to the PASS online server for the prediction of biological insecticide and acetylcholinesterase activities, and only two selected molecules followed for the molecular docking study to evaluate the binding free energy and interaction mode. After these procedures were performed, toxicity risk assessment such as LD50 values in mg/kg and toxicity class using the PROTOX online server, were undertaken. Molecule ZINC00001624 presented potential for inhibition for the acetylcholinesterase enzyme (insect and human) with a binding affinity value of -10.5 and -10.3 kcal/mol, respectively. The interaction with the juvenile hormone was -11.4 kcal/mol for the molecule ZINC00001021. Molecules ZINC00001021 and ZINC00001624 had excellent predictions in all the steps of the study and may be indicated as the most promising molecules resulting from the virtual screening of new insecticidal agents.<br />Federal University of Amapá, Program in Biotechnology and Biodiversity-Network BIONORTE, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for funding in the publication of this article.

Details

Language :
English
ISSN :
14248247
Volume :
12
Issue :
1
Database :
OpenAIRE
Journal :
Pharmaceuticals
Accession number :
edsair.doi.dedup.....da952529cb5c4b877aca41d8badb9025