Back to Search Start Over

Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability

Authors :
William C. Merrick
Rangnath Mishra
Ibrahim Yaman
James Fernandez
Maria Hatzoglou
Martin D. Snider
W. H. Lamers
Anatomie en Embryologie
RS: NUTRIM School of Nutrition and Translational Research in Metabolism
Other departments
Source :
Journal of Biological Chemistry, 276(15), 12285-12291. American Society for Biochemistry and Molecular Biology, Inc., Journal of biological chemistry, 276(15), 12285-12291. American Society for Biochemistry and Molecular Biology Inc.
Publication Year :
2001

Abstract

Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability.Fernandez J, Yaman I, Mishra R, Merrick WC, Snider MD, Lamers WH, Hatzoglou M.Departments of Nutrition and Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106, USA.The cationic amino acid transporter, Cat-1, facilitates the uptake of the essential amino acids arginine and lysine. Amino acid starvation causes accumulation and increased translation of cat-1 mRNA, resulting in a 58-fold increase in protein levels and increased arginine uptake. A bicistronic mRNA expression system was used to demonstrate the presence of an internal ribosomal entry sequence (IRES) within the 5'-untranslated region of the cat-1 mRNA. This study shows that IRES-mediated translation of the cat-1 mRNA is regulated by amino acid availability. This IRES causes an increase in translation under conditions of amino acid starvation. In contrast, cap-dependent protein synthesis is inhibited during amino acid starvation, which is well correlated with decreased phosphorylation of the cap-binding protein, eIF4E. These findings reveal a new aspect of mammalian gene expression and regulation that provides a cellular stress response; when the nutrient supply is limited, the activation of IRES-mediated translation of mammalian mRNAs results in the synthesis of proteins essential for cell survival

Details

Language :
English
ISSN :
00219258
Volume :
276
Issue :
15
Database :
OpenAIRE
Journal :
Journal of biological chemistry
Accession number :
edsair.doi.dedup.....da96208b3fef72174d7c45d1e3d82634
Full Text :
https://doi.org/10.1074/jbc.m009714200