Back to Search
Start Over
Gold-tipped elastomeric pillars for cellular mechanotransduction
- Source :
- Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. 27:3088
- Publication Year :
- 2009
- Publisher :
- American Vacuum Society, 2009.
-
Abstract
- The authors describe a technique for the fabrication of arrays of elastomeric pillars whose top surfaces are treated with selective chemical functionalization to promote cellular adhesion in cellular force transduction experiments. The technique involves the creation of a rigid mold consisting of arrays of circular holes into which a thin layer of Au is deposited, while the top surface of the mold and the sidewalls of the holes are protected by a sacrificial layer of Cr. When an elastomer is formed in the mold, Au adheres to the tops of the molded pillars. This can then be selectively functionalized with a protein that induces cell adhesion, while the rest of the surface is treated with a repellent substance. An additional benefit is that the tops of the pillars can be fluorescently labeled for improved accuracy in force transduction measurements.
- Subjects :
- Fabrication
Chemistry
Thin layer
technology, industry, and agriculture
Nanotechnology
Condensed Matter Physics
medicine.disease_cause
Elastomer
Article
Cellular mechanotransduction
Nanolithography
Mold
Chemical functionalization
medicine
sense organs
Electrical and Electronic Engineering
Cell adhesion
Subjects
Details
- ISSN :
- 10711023
- Volume :
- 27
- Database :
- OpenAIRE
- Journal :
- Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures
- Accession number :
- edsair.doi.dedup.....da9a64d7ae6bb61e0c1e0ecccc610b45