Back to Search Start Over

A VARIATIONAL MODEL FOR DENOISING HIGH ANGULAR RESOLUTION DIFFUSION IMAGING

Authors :
Bryon A. Mueller
Paul M. Thompson
Liang Zhan
Christophe Lenglet
Luminita A. Vese
Guillermo Sapiro
M. Tong
Yunho Kim
Source :
ISBI
Publication Year :
2012

Abstract

The presence of noise in High Angular Resolution Diffusion Imaging (HARDI) data of the brain can limit the accuracy with which fiber pathways of the brain can be extracted. In this work, we present a variational model to denoise HARDI data corrupted by Rician noise. Numerical experiments are performed on three types of data: 2D synthetic data, 3D diffusion-weighted Magnetic Resonance Imaging (DW-MRI) data of a hardware phantom containing synthetic fibers, and 3D real HARDI brain data. Experiments show that our model is effective for denoising HARDI-type data while preserving important aspects of the fiber pathways such as fractional anisotropy and the orientation distribution functions.

Details

Language :
English
Database :
OpenAIRE
Journal :
ISBI
Accession number :
edsair.doi.dedup.....dad29920bfd4d6c45f6bab23f7246641