Back to Search Start Over

Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task

Authors :
Titus J. Brinker
Achim Hekler
Alexander H. Enk
Joachim Klode
Axel Hauschild
Carola Berking
Bastian Schilling
Sebastian Haferkamp
Dirk Schadendorf
Tim Holland-Letz
Jochen S. Utikal
Christof von Kalle
Wiebke Ludwig-Peitsch
Judith Sirokay
Lucie Heinzerling
Magarete Albrecht
Katharina Baratella
Lena Bischof
Eleftheria Chorti
Anna Dith
Christina Drusio
Nina Giese
Emmanouil Gratsias
Klaus Griewank
Sandra Hallasch
Zdenka Hanhart
Saskia Herz
Katja Hohaus
Philipp Jansen
Finja Jockenhöfer
Theodora Kanaki
Sarah Knispel
Katja Leonhard
Anna Martaki
Liliana Matei
Johanna Matull
Alexandra Olischewski
Maximilian Petri
Jan-Malte Placke
Simon Raub
Katrin Salva
Swantje Schlott
Elsa Sody
Nadine Steingrube
Ingo Stoffels
Selma Ugurel
Anne Zaremba
Christoffer Gebhardt
Nina Booken
Maria Christolouka
Kristina Buder-Bakhaya
Therezia Bokor-Billmann
Alexander Enk
Patrick Gholam
Holger Hänßle
Martin Salzmann
Sarah Schäfer
Knut Schäkel
Timo Schank
Ann-Sophie Bohne
Sophia Deffaa
Katharina Drerup
Friederike Egberts
Anna-Sophie Erkens
Benjamin Ewald
Sandra Falkvoll
Sascha Gerdes
Viola Harde
Marion Jost
Katja Kosova
Laetitia Messinger
Malte Metzner
Kirsten Morrison
Rogina Motamedi
Anja Pinczker
Anne Rosenthal
Natalie Scheller
Thomas Schwarz
Dora Stölzl
Federieke Thielking
Elena Tomaschewski
Ulrike Wehkamp
Michael Weichenthal
Oliver Wiedow
Claudia Maria Bär
Sophia Bender-Säbelkampf
Marc Horbrügger
Ante Karoglan
Luise Kraas
Jörg Faulhaber
Cyrill Geraud
Ze Guo
Philipp Koch
Miriam Linke
Nolwenn Maurier
Verena Müller
Benjamin Thomas
Jochen Sven Utikal
Ali Saeed M. Alamri
Andrea Baczako
Matthias Betke
Carolin Haas
Daniela Hartmann
Markus V. Heppt
Katharina Kilian
Sebastian Krammer
Natalie Lidia Lapczynski
Sebastian Mastnik
Suzan Nasifoglu
Cristel Ruini
Elke Sattler
Max Schlaak
Hans Wolff
Birgit Achatz
Astrid Bergbreiter
Konstantin Drexler
Monika Ettinger
Anna Halupczok
Marie Hegemann
Verena Dinauer
Maria Maagk
Marion Mickler
Biance Philipp
Anna Wilm
Constanze Wittmann
Anja Gesierich
Valerie Glutsch
Katrin Kahlert
Andreas Kerstan
Philipp Schrüfer
Source :
European journal of cancer (Oxford, England : 1990). 113
Publication Year :
2019

Abstract

Background Recent studies have successfully demonstrated the use of deep-learning algorithms for dermatologist-level classification of suspicious lesions by the use of excessive proprietary image databases and limited numbers of dermatologists. For the first time, the performance of a deep-learning algorithm trained by open-source images exclusively is compared to a large number of dermatologists covering all levels within the clinical hierarchy. Methods We used methods from enhanced deep learning to train a convolutional neural network (CNN) with 12,378 open-source dermoscopic images. We used 100 images to compare the performance of the CNN to that of the 157 dermatologists from 12 university hospitals in Germany. Outperformance of dermatologists by the deep neural network was measured in terms of sensitivity, specificity and receiver operating characteristics. Findings The mean sensitivity and specificity achieved by the dermatologists with dermoscopic images was 74.1% (range 40.0%–100%) and 60% (range 21.3%–91.3%), respectively. At a mean sensitivity of 74.1%, the CNN exhibited a mean specificity of 86.5% (range 70.8%–91.3%). At a mean specificity of 60%, a mean sensitivity of 87.5% (range 80%–95%) was achieved by our algorithm. Among the dermatologists, the chief physicians showed the highest mean specificity of 69.2% at a mean sensitivity of 73.3%. With the same high specificity of 69.2%, the CNN had a mean sensitivity of 84.5%. Interpretation A CNN trained by open-source images exclusively outperformed 136 of the 157 dermatologists and all the different levels of experience (from junior to chief physicians) in terms of average specificity and sensitivity.

Details

ISSN :
18790852
Volume :
113
Database :
OpenAIRE
Journal :
European journal of cancer (Oxford, England : 1990)
Accession number :
edsair.doi.dedup.....dafcf82766d3c2e86ca62f5532bfeef3