Back to Search
Start Over
Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling
- Source :
- Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 23(5)
- Publication Year :
- 2008
-
Abstract
- Introduction: Distraction osteogenesis (DO) is characterized by the induction of highly vascularized new bone formation through an intramembranous process largely devoid of the formation of cartilage. Materials and Methods: To test the hypothesis that DO is strictly dependent on vascualrization, we inhibited vascular endothelial growth factor (VEGF) activity by antibody blockade of both receptors VEGFR1 (Flt-1) and VEGFR2 (Flk-1) or only VEGFR2 (Flk-1) in a previously developed murine tibia DO model. During normal DO, VEGFR1 (Flt-1), VEGFR2 (Flk-1), VEGFR3 (Flt4) and all four VEGF ligand (A, B, C, and D) mRNAs are induced. Results: The expression of mRNA for the receptors generally paralleled those of the ligands during the period of active distraction. Bone formation, as assessed by μCT, showed a significant decrease with the double antibody treatment and a smaller decrease with single antibody treatment. Vessel volume, number, and connectivity showed progressive and significant inhibition in all of these of parameters between the single and double antibody blockade. Molecular analysis showed significant inhibition in skeletal cell development with the single and double antibody blockade of both VEGFR1 and 2. Interestingly, the single antibody treatment led to selective early development of chondrogenesis, whereas the double antibody treatment led to a failure of both osteogenesis and chondrogenesis. Conclusions: Both VEGFR1 and VEGFR2 are functionally essential in blood vessel and bone formation during DO and are needed to promote osteogenic over chondrogenic lineage progression.
- Subjects :
- Male
medicine.medical_specialty
Angiogenesis
Endocrinology, Diabetes and Metabolism
medicine.medical_treatment
Osteogenesis, Distraction
Biology
Bone morphogenetic protein
chemistry.chemical_compound
Mice
Internal medicine
medicine
Animals
Orthopedics and Sports Medicine
RNA, Messenger
Receptor
Bone Development
Vascular Endothelial Growth Factor Receptor-1
Reverse Transcriptase Polymerase Chain Reaction
Cartilage
Original Articles
Chondrogenesis
Vascular Endothelial Growth Factor Receptor-2
Vascular endothelial growth factor
Mice, Inbred C57BL
medicine.anatomical_structure
Endocrinology
chemistry
Intramembranous ossification
cardiovascular system
Distraction osteogenesis
Signal Transduction
Subjects
Details
- ISSN :
- 15234681
- Volume :
- 23
- Issue :
- 5
- Database :
- OpenAIRE
- Journal :
- Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
- Accession number :
- edsair.doi.dedup.....db068208e933018254cbe657f8df1b87