Back to Search Start Over

Grain-boundary segregation of boron in high-strength steel studied by nano-SIMS and atom probe tomography

Authors :
N. Valle
G. Da Rosa
Philippe Maugis
Alain Portavoce
Khalid Hoummada
Josée Drillet
E. Lentzen
Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP)
Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)
ArcelorMittal Maizières Research SA
ArcelorMittal
Luxembourg Institute of Science and Technology (LIST)
ANRT Project n_ 485-2014
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Source :
Acta Materialia, Acta Materialia, Elsevier, 2020, 182, pp.226-234. ⟨10.1016/j.actamat.2019.10.029⟩, Acta Materialia, 2020, 182, pp.226-234. ⟨10.1016/j.actamat.2019.10.029⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; High resolution imaging by secondary ion mass spectrometry and atom probe tomography have been employed to investigate boron segregation at austenite grain boundaries (γ GBs) after soaking in a high-strength low-carbon steel. The combined use of these two analytical techniques is shown to be powerful for quantifying solute and segregated boron levels. Quenching was performed after soaking aiming to clarify the temperature effect on boron distribution under thermal equilibrium. Boron depletion in the γ GBs vicinity was observed in the as-quenched states from high temperatures, suggesting that the cooling rate was not fast enough to limit boron diffusion during cooling. We found that boron segregation at γ GBs increases with temperature. This is due to the increase of solute boron concentration in the grains, resulting from boride precipitate dissolution. It appears that the segregation magnitude still follows the equilibrium laws as a function of temperature. From our investigations, it was possible to determine the boron equilibrium segregation enthalpy. These results have important practical consequences for controlling the levels of segregated boron in steels.

Details

Language :
English
ISSN :
13596454
Database :
OpenAIRE
Journal :
Acta Materialia, Acta Materialia, Elsevier, 2020, 182, pp.226-234. ⟨10.1016/j.actamat.2019.10.029⟩, Acta Materialia, 2020, 182, pp.226-234. ⟨10.1016/j.actamat.2019.10.029⟩
Accession number :
edsair.doi.dedup.....db1e1223ae37f4cba18d17756115b5e0