Back to Search
Start Over
Clumpy Galaxies in CANDELS. II. Physical Properties of UV-bright Clumps at 0.5 <= z < 3
- Source :
- E-Prints Complutense. Archivo Institucional de la UCM, instname, E-Prints Complutense: Archivo Institucional de la UCM, Universidad Complutense de Madrid
- Publication Year :
- 2018
- Publisher :
- American Astronomical Society, 2018.
-
Abstract
- Studying giant star-forming clumps in distant galaxies is important to understand galaxy formation and evolution. At present, however, observers and theorists have not reached a consensus on whether the observed "clumps" in distant galaxies are the same phenomenon that is seen in simulations. In this paper, as a step to establish a benchmark of direct comparisons between observations and theories, we publish a sample of clumps constructed to represent the commonly observed "clumps" in the literature. This sample contains 3193 clumps detected from 1270 galaxies at $0.5 \leq z < 3.0$. The clumps are detected from rest-frame UV images, as described in our previous paper. Their physical properties, e.g., rest-frame color, stellar mass (M*), star formation rate (SFR), age, and dust extinction, are measured by fitting the spectral energy distribution (SED) to synthetic stellar population models. We carefully test the procedures of measuring clump properties, especially the method of subtracting background fluxes from the diffuse component of galaxies. With our fiducial background subtraction, we find a radial clump U-V color variation, where clumps close to galactic centers are redder than those in outskirts. The slope of the color gradient (clump color as a function of their galactocentric distance scaled by the semi-major axis of galaxies) changes with redshift and M* of the host galaxies: at a fixed M*, the slope becomes steeper toward low redshift, and at a fixed redshift, it becomes slightly steeper with M*. Based on our SED-fitting, this observed color gradient can be explained by a combination of a negative age gradient, a negative E(B-V) gradient, and a positive specific star formation rate gradient of the clumps. We also find that the color gradients of clumps are steeper than those of intra-clump regions. [Abridged]<br />Comment: 23 pages, 14 figures. Accepted by ApJ. The clump catalog will be published online in ApJ. It can also be requested through emails to the first author or this link http://faculty.missouri.edu/guoyic/data/clump/
- Subjects :
- Physics
Astrofísica
Stellar mass
Stellar population
010308 nuclear & particles physics
Star formation
Extinction (astronomy)
Astronomy and Astrophysics
Astrophysics
Astrophysics::Cosmology and Extragalactic Astrophysics
Astrophysics - Astrophysics of Galaxies
01 natural sciences
Redshift
Galaxy
Astronomía
Space and Planetary Science
0103 physical sciences
Galaxy formation and evolution
Spectral energy distribution
Astrophysics::Solar and Stellar Astrophysics
010303 astronomy & astrophysics
Astrophysics::Galaxy Astrophysics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- E-Prints Complutense. Archivo Institucional de la UCM, instname, E-Prints Complutense: Archivo Institucional de la UCM, Universidad Complutense de Madrid
- Accession number :
- edsair.doi.dedup.....db27f063e2f4dacf957151a613027faa