Back to Search Start Over

The surface chemistry of a nanocellulose drug carrier unravelled by MAS-DNP

Authors :
Isabelle Baussanne
Daniel Lee
Sabine Hediger
Sébastien Fort
Cyril Balsollier
Akshay Kumar
Bastien Watbled
Julien Bras
Cécile Sillard
Naceur Belgacem
Gaël De Paëpe
Hippolyte Durand
Martine Demeunynck
Elisa Zeno
Magnetic Resonance (RM )
Modélisation et Exploration des Matériaux (MEM)
Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)
Laboratoire Génie des procédés papetiers (LGP2)
Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
Centre Technique du Papier (CTP)
Centre de Recherches sur les Macromolécules Végétales (CERMAV)
Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Département de pharmacochimie moléculaire (DPM)
Centre National de la Recherche Scientifique (CNRS)
ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017)
Source :
Chemical Science, Chemical Science, 2020, 11 (15), pp.3868-3877. ⟨10.1039/C9SC06312A⟩, Lee, D 2020, ' The surface chemistry of a nanocellulose drug carrier unravelled by MAS-DNP ', Chemical Science, vol. 11, no. 15, pp. 3868-3877 . https://doi.org/10.1039/c9sc06312a, Chemical Science, The Royal Society of Chemistry, 2020, 11 (15), pp.3868-3877. ⟨10.1039/C9SC06312A⟩
Publication Year :
2021

Abstract

Cellulose nanofibrils (CNF) are renewable bio-based materials with high specific area, which makes them ideal candidates for multiple emerging applications including for instance on-demand drug release. However, in-depth chemical and structural characterization of the CNF surface chemistry is still an open challenge, especially for low weight percentage of functionalization. This currently prevents the development of efficient, cost-effective and reproducible green synthetic routes and thus the widespread development of targeted and responsive drug-delivery CNF carriers. We show in this work how we use dynamic nuclear polarization (DNP) to overcome the sensitivity limitation of conventional solid-state NMR and gain insight into the surface chemistry of drug-functionalized TEMPO-oxidized cellulose nanofibrils. The DNP enhanced-NMR data can report unambiguously on the presence of trace amounts of TEMPO moieties and depolymerized cellulosic units in the starting material, as well as coupling agents on the CNFs surface (used in the heterogeneous reaction). This enables a precise estimation of the drug loading while differentiating adsorption from covalent bonding (∼1 wt% in our case) as opposed to other analytical techniques such as elemental analysis and conductometric titration that can neither detect the presence of coupling agents, nor differentiate unambiguously between adsorption and grafting. The approach, which does not rely on the use of 13C/15N enriched compounds, will be key to further develop efficient surface chemistry routes and has direct implication for the development of drug delivery applications both in terms of safety and dosage.<br />DNP-enhanced solid-state NMR unravels the surface chemistry of functionalized nanocellulose.

Details

ISSN :
20416520 and 20416539
Volume :
11
Issue :
15
Database :
OpenAIRE
Journal :
Chemical science
Accession number :
edsair.doi.dedup.....db2972f5f313748a9d7efc029f7376bf
Full Text :
https://doi.org/10.1039/C9SC06312A⟩