Back to Search
Start Over
Direct Correlation Function of a Crystalline Solid
- Source :
- Physical review letters. 127(8)
- Publication Year :
- 2021
-
Abstract
- Direct correlation functions (DCFs), linked to the second functional derivative of the free energy with respect to the one-particle density, play a fundamental role in a statistical mechanics description of matter. This holds, in particular, for the ordered phases: DCFs contain information about the local structure including defects and encode the thermodynamic properties of crystalline solids; they open a route to the elastic constants beyond low temperature expansions. Via a demanding numerical approach, we have explicitly calculated for the first time the DCF of a solid: based on the fundamental measure concept, we provide results for the DCF of a hard sphere crystal. We demonstrate that this function differs at coexistence significantly from its liquid counterpart—both in shape as well as in its order of magnitude—because it is dominated by vacancies. We provide evidence that the traditional use of liquid DCFs in functional Taylor expansions of the free energy is conceptually wrong and show that the emergent elastic constants are in good agreement with simulation-based results. published
- Subjects :
- Physics
General Physics and Astronomy
FOS: Physical sciences
Function (mathematics)
Statistical mechanics
Condensed Matter - Soft Condensed Matter
01 natural sciences
Measure (mathematics)
010305 fluids & plasmas
Crystal
symbols.namesake
Correlation function (statistical mechanics)
0103 physical sciences
Taylor series
symbols
Soft Condensed Matter (cond-mat.soft)
Functional derivative
ddc:530
Statistical physics
010306 general physics
Energy (signal processing)
Subjects
Details
- ISSN :
- 10797114
- Volume :
- 127
- Issue :
- 8
- Database :
- OpenAIRE
- Journal :
- Physical review letters
- Accession number :
- edsair.doi.dedup.....db5e3115e6f979d43a367b9b4b74b706