Back to Search Start Over

Topological solitons, cholesteric fingers and singular defect lines in Janus liquid crystal shells

Authors :
Ivan I. Smalyukh
Teresa Lopez-Leon
Etienne Brasselet
Paul J. Ackerman
Guillaume Durey
Hayley R. O. Sohn
Gulliver (UMR 7083)
Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
University of Colorado [Boulder]
Laboratoire Ondes et Matière d'Aquitaine (LOMA)
Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)
Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
Université Paris-Sciences-et-Lettres (https://www.psl.eu/)
Gulliver
ESPCI ParisTech-Centre National de la Recherche Scientifique (CNRS)
Université de Bordeaux (UB)
Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)
Source :
Soft Matter, Soft Matter, Royal Society of Chemistry, 2020, 16 (11), pp.2669-2682. ⟨10.1039/c9sm02033k⟩
Publication Year :
2020

Abstract

International audience; Topological solitons are non-singular but topologically nontrivial structures in fields, which have fundamental significance across various areas of physics, similar to singular defects. Production and observation of singular and solitonic topological structures remain a complex undertaking in most branches of science – but in soft matter physics, they can be realized within the director field of a liquid crystal. Additionally, it has been shown that confining liquid crystals to spherical shells using microfluidics resulted in a versatile experimental platform for the dynamical study of topological transformations between director configurations. In this work, we demonstrate the triggered formation of topological solitons, cholesteric fingers, singular defect lines and related structures in liquid crystal shells. We show that to accommodate these objects, shells must possess a Janus nature, featuring both twisted and untwisted domains. We report the formation of linear and axisymmetric objects, which we identify as cholesteric fingers and skyrmions or elementary torons, respectively. We then take advantage of the sensitivity of shells to numerous external stimuli to induce dynamical transitions between various types of structures, allowing for a richer phenomenology than traditional liquid crystal cells with solid flat walls. Using gradually more refined experimental techniques, we induce the targeted transformation of cholesteric twist walls and fingers into skyrmions and elementary torons. We capture the different stages of these director transformations using numerical simulations. Finally, we uncover an experimental mechanism to nucleate arrays of axisymmetric structures on shells, thereby creating a system of potential interest for tackling crystallography studies on curved spaces.

Details

ISSN :
17446848 and 1744683X
Volume :
16
Issue :
11
Database :
OpenAIRE
Journal :
Soft matter
Accession number :
edsair.doi.dedup.....db8b4e10218ead213f4283a00b9b0059
Full Text :
https://doi.org/10.1039/c9sm02033k⟩