Back to Search Start Over

Identification of the anti-diffusion coefficient for the linear Kuramoto-Sivashinsky equation

Authors :
Diego Gajardo
Juan Carlos Muñoz
Alberto Mercado
Universidad Tecnica Federico Santa Maria [Valparaiso] (UTFSM)
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Universidad del Valle [Cali] (Univalle)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Mathematical Analysis and Applications, Journal of Mathematical Analysis and Applications, Elsevier, 2021, 495, pp.124747-. ⟨10.1016/j.jmaa.2020.124747⟩, Journal of Mathematical Analysis and Applications, 2021, 495, pp.124747-. ⟨10.1016/j.jmaa.2020.124747⟩
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

The Kuramoto-Sivashinsky equation is a fourth-order partial differential equation used as a model for physical phenomena such as plane flame propagation and phase of turbulence. The inverse problem of recovering the second-order coefficient from the knowledge of the solution in final time, for the linear version of the equation, is studied in this article. The inverse problem is formulated as a regularized nonlinear optimization problem, from which the local uniqueness and the stability are proved. Finally, an algorithm for the reconstruction of the coefficient is proposed and several numerical simulations are presented.

Details

ISSN :
0022247X and 10960813
Volume :
495
Database :
OpenAIRE
Journal :
Journal of Mathematical Analysis and Applications
Accession number :
edsair.doi.dedup.....db9811778f1c82c5c6137648070b8261
Full Text :
https://doi.org/10.1016/j.jmaa.2020.124747