Back to Search Start Over

Chern-Simons theory with the exceptional gauge group as a refined topological string

Authors :
Ruben L. Mkrtchyan
Source :
Physics Letters, Physics Letters B, Vol 808, Iss, Pp 135692-(2020)
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

We present the partition function of Chern-Simons theory with the exceptional gauge group on three-sphere in the form of a partition function of the refined closed topological string with relation $2\tau=g_s(1-b) $ between single K\"ahler parameter $\tau$, string coupling constant $g_s$ and refinement parameter $b$, where $b=\frac{5}{3},\frac{5}{2},3,4,6$ for $G_2, F_4, E_6, E_7, E_8$, respectively. The non-zero BPS invariants $N^d_{J_L,J_R}$ ($d$ - degree) are $N^2_{0,\frac{1}{2}}=1, N^{11}_{0,1}=1$. Besides these terms, partition function of Chern-Simons theory contains term corresponding to the refined constant maps of string theory. Derivation is based on the universal (in Vogel's sense) form of a Chern-Simons partition function on three-sphere, restricted to exceptional line $Exc$ with Vogel's parameters satisfying $\gamma=2(\alpha+\beta)$. This line contains points, corresponding to the all exceptional groups. The same results are obtained for $F$ line $\gamma=\alpha+\beta$ (containing $SU(4), SO(10)$ and $E_6$ groups), with the non-zero $N^2_{0,\frac{1}{2}}=1, N^{7}_{0,1}=1$. In both cases refinement parameter $b$ ($=-\epsilon_2/\epsilon_1$ in terms of Nekrasov's parameters) is given in terms of universal parameters, restricted to the line, by $b=-\beta/\alpha$.<br />Comment: 8 pages

Details

ISSN :
03702693
Volume :
808
Database :
OpenAIRE
Journal :
Physics Letters B
Accession number :
edsair.doi.dedup.....dbdfc945cf14be38cb043979055effc8