Back to Search
Start Over
A repulsive field: advances in the electrostatics of the ion atmosphere
- Source :
- Current Opinion in Chemical Biology. 12:619-625
- Publication Year :
- 2008
- Publisher :
- Elsevier BV, 2008.
-
Abstract
- The large electrostatic repulsion arising from the negatively-charged backbone of RNA molecules presents a large barrier to folding. Solution counterions assist in the folding process by screening this electrostatic repulsion. While early research interpreted the effect of these counterions in terms of an empirical ligand-binding model, theories based on physical models have supplanted them and revised our view of the roles that ions play in folding. Instead of specific ion-binding sites, most ions in solution interact inside an “ion atmosphere” – a fluctuating cloud of non-specifically associated ions surrounding any charged molecule. Recent advances in experiments have begun the task of characterizing the ion atmosphere, yielding valuable data that has revealed deficiencies in Poisson-Boltzmann theory, the most widely-used theory of the ion atmosphere. The continued development of experiments will help guide the development of improved theories, with the ultimate goal of understanding RNA folding and function and nucleic acid/protein interactions from a quantitative perspective.
- Subjects :
- Ions
Models, Molecular
Quantitative Biology::Biomolecules
Field (physics)
Chemistry
Static Electricity
Electrostatics
Biochemistry
Article
Analytical Chemistry
Ion
Atmosphere
Folding (chemistry)
Physics::Plasma Physics
Computational chemistry
Chemical physics
Static electricity
RNA
Molecule
Rna folding
Subjects
Details
- ISSN :
- 13675931
- Volume :
- 12
- Database :
- OpenAIRE
- Journal :
- Current Opinion in Chemical Biology
- Accession number :
- edsair.doi.dedup.....dbff7ca782eaec564c78b4a1488bf95c
- Full Text :
- https://doi.org/10.1016/j.cbpa.2008.10.010