Back to Search Start Over

Learning a Cytometric Deep Phenotype Embedding for Automatic Hematological Malignancies Classification

Authors :
Bor-Sheng Ko
Jih-Luh Tang
Chi-Chun Lee
Jeng-Lin Li
Chi-Cheng Li
Yu-Fen Wang
Source :
EMBC
Publication Year :
2020

Abstract

Identification of minimal residual disease (MRD) is important in assessing the prognosis of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). The current best clinical practice relies heavily on Flow Cytometry (FC) examination. However, the current FC diagnostic examination requires trained physicians to perform lengthy manual interpretation on high-dimensional FC data measurements of each specimen. The difficulty in handling idiosyncrasy between interpreters along with the time-consuming diagnostic process has become one of the major bottlenecks in advancing the treatment of hematological diseases. In this work, we develop an automatic MRD classifications (AML, MDS, normal) algorithm based on learning a deep phenotype representation from a large cohort of retrospective clinical data with over 2000 real patients’ FC samples. We propose to learn a cytometric deep embedding through cell-level autoencoder combined with specimen-level latent Fisher-scoring vectorization. Our method achieves an average AUC of 0.943 across four different hematological malignancies classification tasks, and our analysis further reveals that with only half of the FC markers would be sufficient in obtaining these high recognition accuracies.

Details

ISSN :
26940604
Volume :
2019
Database :
OpenAIRE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Accession number :
edsair.doi.dedup.....dc4915dccf79f44bcbfd99bec52122d8