Back to Search Start Over

Neuroprotective Effects of DTIO, A Novel Analog of Nec-1, in Acute and Chronic Stages After Ischemic Stroke

Authors :
Yong-Ming Zhu
Guizhen Ao
Chen Wang
Xue Gao
Jin Liu
Bo Lin
Shigang Qiao
Wei Li
Yong Ni
Jie-Ru Chen
Huan-Qiu Li
Hui-Ling Zhang
Source :
Neuroscience. 390
Publication Year :
2018

Abstract

Receptor-interacting protein 1 kinase (RIP1K) plays a key role in necroptosis. Necrostatin-1 (Nec-1), a specific inhibitor of RIP1K, provides neuroprotection against ischemic brain injury, associating with inhibition of inflammation. Recently, our group synthesized a novel analog of Nec-1, 5-(3',5'-dimethoxybenzal)-2-thio-imidazole-4-ketone (DTIO). The present study investigated the effect of DTIO on ischemic stroke-induced brain injury in both acute and chronic phase and its underlying mechanism. In vivo, DTIO treatment reduced infarct volume and improved neurological deficits in the acute phase after permanent middle cerebral artery occlusion (pMCAO) and it also attenuated brain atrophy and promoted brain functional recovery in the chronic phase post-cerebral ischemia/reperfusion (I/R). In vitro, DTIO treatment decreased lactate dehydrogenase (LDH) leakage and necrotic cell death in the oxygen and glucose deprivation (OGD) or oxygen and glucose deprivation and reoxygenation (OGD/R)-induced neuronal or astrocytic cell injury. Simultaneously, DTIO suppressed the production and release of inflammatory cytokines, and reduced the formation of glial scar. Homology modeling analysis illustrated that DTIO had an ability of binding to RIP1K. Furthermore, immunoprecipitation analysis showed that DTIO inhibited the phosphorylation of RIP1K and decreased the interaction between the RIP1K and RIP3K. In addition, knockdown of RIP1K had neuroprotective effects and inhibited the release of proinflammatory cytokines, but didn't have a significant effect on DTIO-mediated neuroprotection. In conclusion, DTIO has protective effects on acute ischemic stroke and promotes functional recovery during chronic phase, associating with protecting ischemic neurons and astrocytes, inhibiting inflammation, and lessening the glial scar formation via inhibiting of the RIP1K.

Details

ISSN :
18737544
Volume :
390
Database :
OpenAIRE
Journal :
Neuroscience
Accession number :
edsair.doi.dedup.....dc4affb9b7a95217a4ff61ee20e38ef8