Back to Search
Start Over
Generalized Schur complements and P-complementable operators
- Source :
- CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET, SEDICI (UNLP), Universidad Nacional de La Plata, instacron:UNLP
- Publication Year :
- 2004
-
Abstract
- Let A be a selfadjoint operator and P be an orthogonal projection both operating on a Hilbert space script H sign. We say that A is P-complementable if A-μP≥0 holds for some μ∈R. In this case we define I P(A)=max{μ∈R:A-μP≥0}. As a tool for computing I P(A) we introduce a natural generalization of the Schur complement or shorted operator of A to script S sign=R(P), denoted by Σ(A,P). We give expressions and a characterization for I P(A) that generalize some known results for particular choices of P. We also study some aspects of the shorted operator Σ(A,P) for P-complementable A, under the hypothesis of compatibility of the pair (A,script S sign). We give some applications in the finite dimensional context.<br />Facultad de Ciencias Exactas
- Subjects :
- Hadamard product
Matemáticas
HADAMARD PRODUCT
Positive semidefinite operators
Completely positive maps
Matemática Pura
purl.org/becyt/ford/1 [https]
symbols.namesake
Operator (computer programming)
Discrete Mathematics and Combinatorics
Shorted operator
Hadamard matrix
Mathematics
Discrete mathematics
Numerical Analysis
Algebra and Number Theory
Matemática
Orthographic projection
purl.org/becyt/ford/1.1 [https]
Hilbert space
POSITIVE SEMIDEFINITE OPERATORS
symbols
Schur complement
Geometry and Topology
SHORTED OPERATOR
COMPLETELY POSITIVE MAPS
CIENCIAS NATURALES Y EXACTAS
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET, SEDICI (UNLP), Universidad Nacional de La Plata, instacron:UNLP
- Accession number :
- edsair.doi.dedup.....dc84a4522e43ca13db25333ce3ecfca8