Back to Search
Start Over
G6PD activity contributes to the regulation of histone acetylation and gene expression in smooth muscle cells and to the pathogenesis of vascular diseases
- Source :
- Am J Physiol Heart Circ Physiol
- Publication Year :
- 2021
- Publisher :
- American Physiological Society, 2021.
-
Abstract
- We aimed to determine 1) the mechanism(s) that enables glucose-6-phosphate dehydrogenase (G6PD) to regulate serum response factor (SRF)- and myocardin (MYOCD)-driven smooth muscle cell (SMC)-restricted gene expression, a process that aids in the differentiation of SMCs, and 2) whether G6PD-mediated metabolic reprogramming contributes to the pathogenesis of vascular diseases in metabolic syndrome (MetS). Inhibition of G6PD activity increased (>30%) expression of SMC-restricted genes and concurrently decreased (40%) the growth of human and rat SMCs ex vivo. Expression of SMC-restricted genes decreased (>100-fold) across successive passages in primary cultures of SMCs isolated from mouse aorta. G6PD inhibition increased Myh11 (47%) while decreasing (>50%) Sca-1, a stem cell marker, in cells passaged seven times. Similarly, CRISPR-Cas9-mediated expression of the loss-of-function Mediterranean variant of G6PD (S188F; G6PD(S188F)) in rats promoted transcription of SMC-restricted genes. G6PD knockdown or inhibition decreased (48.5%) histone deacetylase (HDAC) activity, enriched (by 3-fold) H3K27ac on the Myocd promoter, and increased Myocd and Myh11 expression. Interestingly, G6PD activity was significantly higher in aortas from JCR rats with MetS than control Sprague-Dawley (SD) rats. Treating JCR rats with epiandrosterone (30 mg/kg/day), a G6PD inhibitor, increased expression of SMC-restricted genes, suppressed Serpine1 and Epha4, and reduced blood pressure. Moreover, feeding SD control (littermates) and G6PD(S188F) rats a high-fat diet for 4 mo increased Serpine1 and Epha4 expression and mean arterial pressure in SD but not G6PD(S188F) rats. Our findings demonstrate that G6PD downregulates transcription of SMC-restricted genes through HDAC-dependent deacetylation and potentially augments the severity of vascular diseases associated with MetS. NEW & NOTEWORTHY This study gives detailed mechanistic insight about the regulation of smooth muscle cell (SMC) phenotype by metabolic reprogramming and glucose-6-phosphate dehydrogenase (G6PD) in diabetes and metabolic syndrome. We demonstrate that G6PD controls the chromatin modifications by regulating histone deacetylase (HDAC) activity, which deacetylates histone 3-lysine 9 and 27. Notably, inhibition of G6PD decreases HDAC activity and enriches H3K27ac on myocardin gene promoter to enhance the expression of SMC-restricted genes. Also, we demonstrate for the first time that G6PD inhibitor treatment accentuates metabolic and transcriptomic reprogramming to reduce neointimal formation in coronary artery and large artery elastance in metabolic syndrome rats.
- Subjects :
- Male
Serum Response Factor
Physiology
Myocytes, Smooth Muscle
Cell
Mice, Transgenic
Glucosephosphate Dehydrogenase
Vascular Remodeling
Muscle, Smooth, Vascular
Cell Line
Histones
Rats, Sprague-Dawley
Pathogenesis
hemic and lymphatic diseases
Physiology (medical)
Diabetes mellitus
Gene expression
medicine
Animals
Humans
Metabolic Syndrome
Myosin Heavy Chains
biology
Hemodynamics
Nuclear Proteins
Acetylation
medicine.disease
Phenotype
Cell biology
Disease Models, Animal
medicine.anatomical_structure
Histone
Gene Expression Regulation
Mutation
cardiovascular system
Trans-Activators
biology.protein
Female
Metabolic syndrome
Cardiology and Cardiovascular Medicine
Protein Processing, Post-Translational
Research Article
Transcription Factors
Subjects
Details
- ISSN :
- 15221539 and 03636135
- Volume :
- 320
- Database :
- OpenAIRE
- Journal :
- American Journal of Physiology-Heart and Circulatory Physiology
- Accession number :
- edsair.doi.dedup.....dc92ea86752b3c66d53d925d044007f6
- Full Text :
- https://doi.org/10.1152/ajpheart.00488.2020