Back to Search Start Over

Post-transcriptional regulation of the human reduced folate carrier as a novel adaptive mechanism in response to folate excess or deficiency

Authors :
Larry H. Matherly
Zhanjun Hou
Steve Orr
Source :
Bioscience Reports, Bioscience Reports, Vol 34, Iss 4, p e00130 (2014)
Publication Year :
2014
Publisher :
Portland Press Ltd., 2014.

Abstract

The RFC (reduced folate carrier) is the principal mechanism by which folates and clinically used antifolates are delivered to mammalian cells. hRFC (human RFC) is subject to complex transcriptional controls and exists as homo-oligomer. To explore the post-transcriptional regulation of hRFC by exogenous folates, hRFC-null HeLa cells were stably transfected with hRFC under control of a constitutive promoter. hRFC transcripts and the total membrane protein increased with increasing LCV [(6R,S)5-formyl tetrahydrofolate (leucovorin)] with a maximum at 20 nM LCV, attributable to reduced turnover of hRFC transcripts. hRFC homo-oligomerization was unaffected by increasing LCV. Cell surface hRFC paralleled [3H]methotrexate transport and increased from 0.5 to 2 nM LCV, and then decreased (~2-fold) with increasing LCV up to 20 nM. hRFC was localized to the cell surface at low LCV concentrations (0.5–1.5 nM). However, at higher LCV concentrations, significant intracellular hRFC was localized to the ER (endoplasmic reticulum), such that at 20 nM LCV, intracellular hRFC was predominated. Our results demonstrate a novel post-transcriptional regulation of hRFC involving: (i) increased hRFC transcripts and proteins, accompanying increased extracellular folates, attributable to differences in hRFC transcript stabilities; and (ii) increased retention of hRFC in the ER under conditions of folate excess, because of impaired intracellular trafficking and plasma membrane targeting.<br />A novel regulation of the physiologically/pharmacologically important human reduced folate carrier was demonstrated in response to increasing extracellular folates, involving: (i) increased transcripts and total protein, reflecting increased transcript stabilities; and (ii) increased endoplasmic reticulum trapping, due to impaired intracellular trafficking.

Details

Language :
English
ISSN :
15734935 and 01448463
Volume :
34
Issue :
4
Database :
OpenAIRE
Journal :
Bioscience Reports
Accession number :
edsair.doi.dedup.....dce224761b93f1a493f46dbb42e85a71