Back to Search Start Over

Enhancing Cubes with Models to Describe Multidimensional Data

Authors :
Verónika Peralta
Stefano Rizzi
Matteo Francia
Patrick Marcel
Peralta, Veronika
Matteo Francia, Patrick Marcel, Veronika Peralta, Stefano Rizzi
Bases de données et traitement des langues naturelles (BDTLN)
Laboratoire d'Informatique Fondamentale et Appliquée de Tours (LIFAT)
Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Source :
Information Systems Frontiers, Information Systems Frontiers, Springer Verlag, 2021
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

The Intentional Analytics Model (IAM) has been recently envisioned as a new paradigm to couple OLAP and analytics. It relies on two basic ideas: (i) letting the user explore data by expressing her analysis intentions rather than the data she needs, and (ii) returning enhanced cubes, i.e., multidimensional data annotated with knowledge insights in the form of interesting model components (e.g., clusters). In this paper we contribute to give a proof-of-concept for the IAM vision by delivering an end-to-end implementation of , one of the five intention operators introduced by IAM. Among the research challenges left open in IAM, those we address are (i) automatically tuning the size of models (e.g., the number of clusters), (ii) devising a measure to estimate the interestingness of model components, (iii) selecting the most effective chart or graph for visualizing each enhanced cube depending on its features, and (iv) devising a visual metaphor to display enhanced cubes and interact with them. We assess the validity of our approach in terms of user effort for formulating intentions, effectiveness, efficiency, and scalability.

Details

Language :
English
ISSN :
13873326 and 15729419
Database :
OpenAIRE
Journal :
Information Systems Frontiers, Information Systems Frontiers, Springer Verlag, 2021
Accession number :
edsair.doi.dedup.....dcfd7c8672b05403647c342ad4884318