Back to Search
Start Over
Large-scale analysis of antigenic diversity of T-cell epitopes in dengue virus
- Source :
- BMC Bioinformatics, BMC Bioinformatics, Vol 7, Iss Suppl 5, p S4 (2006)
- Publisher :
- Springer Nature
-
Abstract
- Background Antigenic diversity in dengue virus strains has been studied, but large-scale and detailed systematic analyses have not been reported. In this study, we report a bioinformatics method for analyzing viral antigenic diversity in the context of T-cell mediated immune responses. We applied this method to study the relationship between short-peptide antigenic diversity and protein sequence diversity of dengue virus. We also studied the effects of sequence determinants on viral antigenic diversity. Short peptides, principally 9-mers were studied because they represent the predominant length of binding cores of T-cell epitopes, which are important for formulation of vaccines. Results Our analysis showed that the number of unique protein sequences required to represent complete antigenic diversity of short peptides in dengue virus is significantly smaller than that required to represent complete protein sequence diversity. Short-peptide antigenic diversity shows an asymptotic relationship to the number of unique protein sequences, indicating that for large sequence sets (~200) the addition of new protein sequences has marginal effect to increasing antigenic diversity. A near-linear relationship was observed between the extent of antigenic diversity and the length of protein sequences, suggesting that, for the practical purpose of vaccine development, antigenic diversity of short peptides from dengue virus can be represented by short regions of sequences (~ Conclusion This study provides evidence that there are limited numbers of antigenic combinations in protein sequence variants of a viral species and that short regions of the viral protein are sufficient to capture antigenic diversity of T-cell epitopes. The approach described herein has direct application to the analysis of other viruses, in particular those that show high diversity and/or rapid evolution, such as influenza A virus and human immunodeficiency virus (HIV).
- Subjects :
- 030231 tropical medicine
Molecular Sequence Data
Epitopes, T-Lymphocyte
Context (language use)
Biology
Dengue virus
medicine.disease_cause
lcsh:Computer applications to medicine. Medical informatics
Biochemistry
Epitope
Antigenic drift
03 medical and health sciences
Antigenic Diversity
Viral Proteins
0302 clinical medicine
Structural Biology
Antigenic variation
medicine
Amino Acid Sequence
Serotyping
Databases, Protein
Peptide sequence
lcsh:QH301-705.5
Molecular Biology
030304 developmental biology
0303 health sciences
Sequence Homology, Amino Acid
Applied Mathematics
Antigenic shift
Computational Biology
Dengue Virus
respiratory system
Virology
Antigenic Variation
Peptide Fragments
3. Good health
Computer Science Applications
Proceedings
lcsh:Biology (General)
lcsh:R858-859.7
human activities
Subjects
Details
- Language :
- English
- ISSN :
- 14712105
- Volume :
- 7
- Issue :
- Suppl 5
- Database :
- OpenAIRE
- Journal :
- BMC Bioinformatics
- Accession number :
- edsair.doi.dedup.....dd638dd36e16a8ebc94b3529e2d7e992
- Full Text :
- https://doi.org/10.1186/1471-2105-7-s5-s4