Back to Search Start Over

Novel anti-inflammatory mechanisms ofN-Acetyl-Ser-Asp-Lys-Pro in hypertension-induced target organ damage

Authors :
Hongmei Peng
Saman Rasoul
Umesh C. Sharma
Saraswati Pokharel
Oscar A. Carretero
Pamela Harding
Nour Eddine Rhaleb
Source :
American Journal of Physiology-Heart and Circulatory Physiology. 294:H1226-H1232
Publication Year :
2008
Publisher :
American Physiological Society, 2008.

Abstract

Sharma U, Rhaleb NE, Pokharel S, Harding P, Rasoul S, Peng H, Carretero OA. Novel anti-inflammatory mechanisms of N-Acetyl-Ser-Asp-Lys-Pro in hypertension-induced target organ damage. Am J Physiol Heart Circ Physiol 294: H1226–H1232, 2008. First published January 4, 2008; doi:10.1152/ajpheart.00305.2007.— High blood pressure (HBP) is an important risk factor for cardiac, renal, and vascular dysfunction. Excess inflammation is the major pathogenic mechanism for HBP-induced target organ damage (TOD). N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP), a tetrapeptide specifically degraded by angiotensin converting enzyme (ACE), reduces inflammation, fibrosis, and TOD induced by HBP. Our hypothesis is that Ac-SDKP exerts its anti-inflammatory effects by inhibiting: 1) differentiation of bone marrow stem cells (BMSC) to macrophages, 2) activation and migration of macrophages, and 3) release of the proinflammatory cytokine TNF-α by activated macrophages. BMSC were freshly isolated and cultured in macrophage growth medium. Differentiation of murine BMSC to macrophages was analyzed by flow cytometry using F4/80 as a marker of macrophage maturation. Macrophage migration was measured in a modified Boyden chamber. TNF-α release by activated macrophages in culture was measured by ELISA. Myocardial macrophage activation in mice with ANG II-induced hypertension was studied by Western blotting of Mac-2 (galectin-3) protein. Interstitial collagen deposition was measured by picrosirius red staining. We found that Ac-SDKP (10 nM) reduced differentiation of cultured BMSC to mature macrophages by 24.5% [F4/80 positivity: 14.09 ± 1.06 mean fluorescent intensity for vehicle and 10.63 ± 0.35 for Ac-SDKP; P ˂ 0.05]. Ac-SDKP also decreased galectin-3 and macrophage colony-stimulating factor-dependent macrophage migration. In addition, Ac-SDKP decreased secretion of TNF-α by macrophages stimulated with bacterial LPS. In mice with ANG II-induced hypertension, Ac-SDKP reduced expression of galectin-3, a protein produced by infiltrating macrophages in the myocardium, and interstitial collagen deposition. In conclusion, this study demonstrates that part of the anti-inflammatory effect of Ac-SDKP is due to its direct effect on BMSC and macrophage, inhibiting their differentiation, activation, and cytokine release. These effects explain some of the anti-inflammatory and antifibrotic properties of Ac-SDKP in hypertension.

Details

ISSN :
15221539 and 03636135
Volume :
294
Database :
OpenAIRE
Journal :
American Journal of Physiology-Heart and Circulatory Physiology
Accession number :
edsair.doi.dedup.....dd6b5578ba9b8ba4b767456e030b94f5
Full Text :
https://doi.org/10.1152/ajpheart.00305.2007