Back to Search Start Over

Stomatal response to decreased relative humidity constrains the acceleration of terrestrial evapotranspiration

Authors :
M. Altaf Arain
Nina Buchmann
Mingzhong Xiao
Dongdong Kong
Lutz Merbold
Mana Gharun
Sebastian Wolf
Ivan Mammarella
Jason Beringer
Annalea Lohila
Vincenzo Magliulo
Leonardo Montagnani
Lukas Hörtnagl
Xihui Gu
Beniamino Gioli
Zhongbo Yu
Staff Services
INAR Physics
Micrometeorology and biogeochemical cycles
Source :
Environmental Research Letters, 15 (9), Environmental research letters 15 (2020): Article number 094066. doi:10.1088/1748-9326/ab9967, info:cnr-pdr/source/autori:Xiao M.; Yu Z.; Kong D.; Gu X.; Mammarella I.; Montagnani L.; Arain A.; Merbold L.; Magliulo V.; Lohila A.; Buchmann N.; Wolf S.; Gharun M.; Hörtnagl L.; Beringer J.; Gioli B./titolo:Stomatal response to decreased relative humidity constrains the acceleration of terrestrial evapotranspiration/doi:10.1088%2F1748-9326%2Fab9967/rivista:Environmental research letters/anno:2020/pagina_da:Article number 094066/pagina_a:/intervallo_pagine:Article number 094066/volume:15
Publication Year :
2020
Publisher :
IOP Publishing, 2020.

Abstract

Terrestrial evapotranspiration (ET) is thermodynamically expected to increase with increasing atmospheric temperature; however, the actual constraints on the intensification of ET remain uncertain due to a lack of direct observations. Based on the FLUXNET2015 Dataset, we found that relative humidity (RH) is a more important driver of ET than temperature. While actual ET decrease at reduced RH, potential ET increases, consistently with the complementary relationship (CR) framework stating that the fraction of energy not used for actual ET is dissipated as increased sensible heat flux that in turn increases potential ET. In this study, we proposed an improved CR formulation requiring no parameter calibration and assessed its reliability in estimating ET both at site-level with the FLUXNET2015 Dataset and at basin-level. Using the ERA-Interim meteorological dataset for 1979–2017 to calculate ET, we found that the global terrestrial ET showed an increasing trend until 1998, while the trend started to decline afterwards. Such decline was largely associated with a reduced RH, inducing water stress conditions that triggered stomatal closure to conserve water. For the first time, this study quantified the global-scale implications of changes in RH on terrestrial ET, indicating that the temperature-driven acceleration of the terrestrial water cycle will be likely constrained by terrestrial vegetation feedbacks.

Details

Language :
English
Database :
OpenAIRE
Journal :
Environmental Research Letters, 15 (9), Environmental research letters 15 (2020): Article number 094066. doi:10.1088/1748-9326/ab9967, info:cnr-pdr/source/autori:Xiao M.; Yu Z.; Kong D.; Gu X.; Mammarella I.; Montagnani L.; Arain A.; Merbold L.; Magliulo V.; Lohila A.; Buchmann N.; Wolf S.; Gharun M.; Hörtnagl L.; Beringer J.; Gioli B./titolo:Stomatal response to decreased relative humidity constrains the acceleration of terrestrial evapotranspiration/doi:10.1088%2F1748-9326%2Fab9967/rivista:Environmental research letters/anno:2020/pagina_da:Article number 094066/pagina_a:/intervallo_pagine:Article number 094066/volume:15
Accession number :
edsair.doi.dedup.....de6111c60e28f356bee269a68a8cfb09
Full Text :
https://doi.org/10.1088/1748-9326/ab9967