Back to Search Start Over

Multiscale cardiac imaging to capture the whole heart and its internal cellular architecture, with applications to congenital heart disease

Authors :
Jessica McQuiston
Kent L. Thornburg
Sandra Rugonyi
Katherine Courchaine
Alina Maloyan
Claudia S. López
Sanika Deosthali
Ian Fries
Graham Rykiel
Publication Year :
2020
Publisher :
Cold Spring Harbor Laboratory, 2020.

Abstract

Efficient cardiac pumping depends on the morphological structure of the heart, but also on its sub-cellular (ultrastructural) architecture, which enables cardiac contraction. In cases of congenital heart defects, localized sub-cellular disruptions in architecture that increase the risk of heart failure are only starting to be discovered. This is in part due to a lack of technologies that can image the three dimensional (3D) heart structure, assessing malformations; and its ultrastructure, assessing disruptions. We present here a multiscale, correlative imaging procedure that achieves high-resolution images of the whole heart, using 3D micro-computed tomography (micro-CT); and its ultrastructure, using 3D scanning electron microscopy (SEM). This combination of technologies has not been possible before in imaging the same cardiac sample due to the heart large size, even when studying small fetal and neonatal animal models (~5×5×5mm3). Here, we achieved uniform fixation and staining of the whole heart, without losing ultrastructural preservation (at the nm resolution range). Our approach enables multiscale studies of cardiac architecture in models of congenital heart disease and beyond.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....de7a7cdb6cbd4e1ad97578e845a01df0
Full Text :
https://doi.org/10.1101/2020.04.22.055418