Back to Search
Start Over
Environmental parameters sensitivity analysis for the modeling of wind turbine noise in downwind conditions
- Source :
- The Journal of the Acoustical Society of America, The Journal of the Acoustical Society of America, 2020, 148 (6), pp.3623--3632. ⟨10.1121/10.0002872⟩, Journal of the Acoustical Society of America, Journal of the Acoustical Society of America, Acoustical Society of America, 2020, 148 (6), pp.3623-3632. ⟨10.1121/10.0002872⟩, Journal of the Acoustical Society of America, 2020, 148 (6), pp.3623-3632. ⟨10.1121/10.0002872⟩
- Publication Year :
- 2020
-
Abstract
- Modeling a wind turbine sound field involves taking into account the main aeroacoustic sources that are generally dominant for modern wind turbines, as well as environmental phenomena such as atmospheric conditions and ground properties that are variable in both time and space. A crucial step to obtain reliable predictions is to estimate the relative influence of environmental parameters on acoustic emission and propagation, in order to determine the parameters that induce the greatest variability on sound pressure level. Thus, this study proposes a Morris sensitivity analysis of a wind turbine noise emission model combined with a sound propagation model in downwind conditions. The emission model is based on Amiet's theory and propagation effects are modeled by the wide-angle parabolic equation. The whole simulation takes into account ground effects (absorption through acoustic impedance and scattering through surface roughness) and micrometeorological effects (mean refraction through the vertical gradient of effective sound speed). The final results show that the parameters involved in atmospheric refraction and in ground absorption have a significant influence on sound pressure level. On the other hand, in the context of this study the relative air humidity and the ground roughness parameters appear to be negligible on sound pressure level sensitivity.
- Subjects :
- Absorption (acoustics)
Acoustics and Ultrasonics
incertitudes
Acoustics
Ifsttar
01 natural sciences
7. Clean energy
Turbine
03 medical and health sciences
0302 clinical medicine
Arts and Humanities (miscellaneous)
EOLIENNE
Speed of sound
0103 physical sciences
Refraction (sound)
Atmospheric refraction
ACLI
030223 otorhinolaryngology
Sound pressure
Propagation
010301 acoustics
ComputingMilieux_MISCELLANEOUS
Wind power
Cerema
business.industry
[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph]
Noise
13. Climate action
Environmental science
business
Subjects
Details
- ISSN :
- 15208524 and 00014966
- Volume :
- 148
- Issue :
- 6
- Database :
- OpenAIRE
- Journal :
- The Journal of the Acoustical Society of America
- Accession number :
- edsair.doi.dedup.....de8cb70b048c4eb0c60cfa5f13e81d94
- Full Text :
- https://doi.org/10.1121/10.0002872⟩