Back to Search Start Over

Variational theory of balance systems

Authors :
Serge Preston
Source :
Differential Geometry and Its Applications.
Publication Year :
2008
Publisher :
WORLD SCIENTIFIC, 2008.

Abstract

In this work, we apply the Poincaré–Cartan formalism of Classical Field Theory to study the systems of balance equations (balance systems). We introduce the partial k-jet bundles [Formula: see text] of the configurational bundle π : Y → X and study their basic properties: partial Cartan structure, prolongation of vector fields, etc. A constitutive relation C of a balance system [Formula: see text] is realized as the mapping between a (partial) k-jet bundle [Formula: see text] and the extended dual bundle [Formula: see text] similar to the Legendre mapping of the Lagrangian Field Theory. The invariant (variational) form of the balance system [Formula: see text] corresponding to a constitutive relation [Formula: see text] is studied. Special cases of balance systems — Lagrangian systems of order 1 with arbitrary sources and RET (Rational Extended Thermodynamics) systems are characterized in geometrical terms. The action of automorphisms of the bundle π on the constitutive mappings [Formula: see text] is studied and it is shown that the symmetry group [Formula: see text] of [Formula: see text] acts on the sheaf of solutions [Formula: see text] of balance system [Formula: see text]. A suitable version of Noether theorem for an action of a symmetry group is presented together with the special forms for semi-Lagrangian and RET balance systems. Examples of energy momentum and gauge symmetries balance laws are provided. At the end, we introduce the secondary balance laws for a balance system and classify these laws for the Cattaneo heat propagation system.

Details

Database :
OpenAIRE
Journal :
Differential Geometry and Its Applications
Accession number :
edsair.doi.dedup.....de8fa98d0f0a563562302a8e550c94c4
Full Text :
https://doi.org/10.1142/9789812790613_0057