Back to Search Start Over

Self-Adaptive Surrogate-Assisted Covariance Matrix Adaptation Evolution Strategy

Authors :
Marc Schoenauer
Ilya Loshchilov
Michèle Sebag
Machine Learning and Optimisation (TAO)
Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Paris-Sud - Paris 11 (UP11)-Laboratoire de Recherche en Informatique (LRI)
Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec
Microsoft Research - Inria Joint Centre (MSR - INRIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Microsoft Research Laboratory Cambridge-Microsoft Corporation [Redmond, Wash.]
Laboratoire de Recherche en Informatique (LRI)
Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
This work was partially funded by FUI of System@tic Paris-Region ICT cluster through contract DGT 117 407 Complex Systems Design Lab (CSDL)
Terence Soule and Jason H. Moore
Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Source :
Genetic and Evolutionary Computation Conference (GECCO 2012), Genetic and Evolutionary Computation Conference (GECCO 2012), Jul 2012, Philadelphia, United States. pp.321-328, GECCO
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

This paper presents a novel mechanism to adapt surrogate-assisted population-based algorithms. This mechanism is applied to ACM-ES, a recently proposed surrogate-assisted variant of CMA-ES. The resulting algorithm, saACM-ES, adjusts online the lifelength of the current surrogate model (the number of CMA-ES generations before learning a new surrogate) and the surrogate hyper-parameters. Both heuristics significantly improve the quality of the surrogate model, yielding a significant speed-up of saACM-ES compared to the ACM-ES and CMA-ES baselines. The empirical validation of saACM-ES on the BBOB-2012 noiseless testbed demonstrates the efficiency and the scalability w.r.t the problem dimension and the population size of the proposed approach, that reaches new best results on some of the benchmark problems.<br />Genetic and Evolutionary Computation Conference (GECCO 2012) (2012)

Details

Language :
English
Database :
OpenAIRE
Journal :
Genetic and Evolutionary Computation Conference (GECCO 2012), Genetic and Evolutionary Computation Conference (GECCO 2012), Jul 2012, Philadelphia, United States. pp.321-328, GECCO
Accession number :
edsair.doi.dedup.....dee658887ceef824e2328e15b1e00aa6