Back to Search Start Over

Decomposition methods for the two-stage stochastic Steiner tree problem

Authors :
Markus Sinnl
Markus Leitner
Ivana Ljubić
Martin Luipersbeck
University of Vienna [Vienna]
ESSEC Business School
Integrated Optimization with Complex Structure (INOCS)
Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université libre de Bruxelles (ULB)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Essec Business School
Université libre de Bruxelles (ULB)-Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Operations Analytics
Source :
Computational Optimization and Applications, Computational Optimization and Applications, 2017, pp.1-40. ⟨10.1007/s10589-017-9966-x⟩, Leitner, M, Ljubic, I, Luipersbeck, M & Sinnl, M 2018, ' Decomposition methods for the two-stage stochastic Steiner tree problem ', Computational Optimization and Applications, vol. 69, no. 3, pp. 713-752 . https://doi.org/10.1007/s10589-017-9966-x, Computational Optimization and Applications, Springer Verlag, 2017, pp.1-40. ⟨10.1007/s10589-017-9966-x⟩, Computational Optimization and Applications, 69(3), 713-752. Springer Netherlands
Publication Year :
2017
Publisher :
Springer Science and Business Media LLC, 2017.

Abstract

International audience; A new algorithmic approach for solving the stochastic Steiner tree problem based on three procedures for computing lower bounds (dual ascent, Lagrangian relaxation, Benders decomposition) is introduced. Our method is derived from a new integer linear programming formulation, which is shown to be strongest among all known formulations. The resulting method, which relies on an interplay of the dual information retrieved from the respective dual procedures, computes upper and lower bounds and combines them with several rules for fixing variables in order to decrease the size of problem instances. The effectiveness of our method is compared in an extensive computational study with the state-of-the-art exact approach, which employs a Benders decomposition based on two-stage branch-and-cut, and a genetic algorithm introduced during the DIMACS implementation challenge on Steiner trees. Our results indicate that the presented method significantly outperforms existing ones, both on benchmark instances from literature, as well as on large-scale telecommunication networks.

Details

ISSN :
15732894 and 09266003
Volume :
69
Database :
OpenAIRE
Journal :
Computational Optimization and Applications
Accession number :
edsair.doi.dedup.....dff15d800eb883c6053d4f278f6eb19a
Full Text :
https://doi.org/10.1007/s10589-017-9966-x